满分5 > 初中数学试题 >

如图,在平面直角坐标系中,A,B两点的坐标分别为A(-2,0),B(8,0),以...

如图,在平面直角坐标系中,A,B两点的坐标分别为A(-2,0),B(8,0),以AB为直径的半圆与y轴交于点M,以AB为一边作正方形ABCD.
(1)求C,M两点的坐标;
(2)连接CM,试判断直线CM是否与⊙P相切?说明你的理由;
(3)在x轴上是否存在一点Q,使得△QMC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)依题意推出AB=BC=CD=AD,连接PM,根据勾股定理求出OM的值后可求出点M的坐标; (2)本题有多种方法解答.首先连接PC,CM,根据勾股定理先求出CM的值,然后证明△CMP≌△CPB即可证得∠CMP=∠CBP=90°; (3)本题有几种解法,符合题意即可,首先作M点关于x轴的对称点M',连接M'C,根据题意可知QM+QC的和最小,因为MC为定值,故△QMC的周长最小,证明△M'OQ∽△M'EC,利用线段比求出OQ的值. 【解析】 (1)∵A(-2,0),B(8,0),四边形ABCD是正方形, ∴AB=BC=CD=AD=10,⊙P的半径为5,(1分) C(8,10),(2分) 连接PM,PM=5,在Rt△PMO中, ∴M(0,4);(3分) (2)方法一:直线CM是⊙P的切线.(4分) 证明:连接PC,CM,如图(1), 在Rt△EMC中,(5分) ∴CM=CB 又∵PM=PB,CP=CP ∴△CPM≌△CPB(6) ∴∠CMP=∠CBP=90° CM是⊙P的切线;(7分) 方法二:直线CM是⊙P的切线.(4分) 证明:连接PC,如图(1),在Rt△PBC中, PC2=PB2+BC2=52+102=125(5分) 在Rt△MEC中 ∴CM2=CE2+ME2=82+62=100(6分) ∴PC2=CM2+PM2 ∴△PMC是直角三角形,即∠PMC=90° ∴直线CM与⊙P相切.(7分) 方法三:直线CM是⊙P的切线.(4分) 证明:连接MB,PM如图(2), 在Rt△EMC中,(5) ∴CM=CB ∴∠CBM=∠CMB(6) ∴PM=PB∴∠PBM=∠PMB ∴∠PMB+∠CMB=∠PBM+∠CBM=90° 即PM⊥MC ∴CM是⊙P的切线;(7分) (3)方法一:作M点关于x轴的对称点M',则M′(0,-4), 连接M'C,与x轴交于点Q,此时QM+QC的和最小, 因为MC为定值,所以△QMC的周长最小,(8分) ∵△M'OQ∽△M′EC ∴(9分) ∴;(10分) 方法二:作M点关于x轴的对称点M′,则M′(0,-4), 连接M'C,与x轴交于点Q,此时QM+QC的和最小, 因为MC为定值,所以△QMC的周长最小,(8分) 设直线M'C的解析式为y=kx+b, 把M′(0,-4)和C(8,10)分别代入得, 解得 ∴,当y=0时,(9分) ∴.(10分)
复制答案
考点分析:
相关试题推荐
如图,已知⊙O及⊙O外的一点P.
(1)求作:过点P的⊙O的切线;
(要求:作图要利用直尺和圆规,不写作法,但要保留作图痕迹)
(2)若⊙O的半径为2,OP=6,求切线长.

manfen5.com 满分网 查看答案
如图,在Rt△ABC中,∠C=90°,AD是∠BAC的角平分线,以AB上一点O为圆心,AD为弦作⊙O.
(1)在图中作出⊙O(不写作法,保留作图痕迹);
(2)求证:BC为⊙O的切线;
(3)若AC=3,tanB=manfen5.com 满分网,求⊙O的半径长.

manfen5.com 满分网 查看答案
某新建小区要在一块等边三角形的公共区域内修建一个圆形花坛.
(1)若要使花坛面积最大,请你在这块公共区域(如图)内确定圆形花坛的圆心P;
(2)若这个等边三角形的边长为18米,请计算出花坛的面积.

manfen5.com 满分网 查看答案
阅读材料:如图(一),△ABC的周长为l,内切圆O的半径为r,连接OA、OB、OC,△ABC被划分为三个小三角形,用S△ABC表示△ABC的面积.
manfen5.com 满分网
∵S△ABC=S△OAB+S△OBC+S△OCA
又∵S△OAB=manfen5.com 满分网AB•r,S△OBC=manfen5.com 满分网BC•r,S△OCA=manfen5.com 满分网CA•r
∴S△ABC=manfen5.com 满分网AB•r+manfen5.com 满分网BC•r+manfen5.com 满分网CA•r=manfen5.com 满分网l•r(可作为三角形内切圆半径公式)
(1)理解与应用:利用公式计算边长分为5、12、13的三角形内切圆半径;
(2)类比与推理:若四边形ABCD存在内切圆(与各边都相切的圆,如图(二))且面积为S,各边长分别为a、b、c、d,试推导四边形的内切圆半径公式;
(3)拓展与延伸:若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1、a2、a3、…、an,合理猜想其内切圆半径公式(不需说明理由).
查看答案
为了探索三角形的内切圆半径r与周长L、面积S之间的关系,在数学实验活动中,选取等边三角形(图甲)和直角三角形(图乙)进行研究.如图,⊙O是△ABC的内切圆,切点分别为点D、E、F.
manfen5.com 满分网
(1)用刻度尺分别量出表中未度量的△ABC的长,填入空格处,并计算出周长L和面积S.(结果精确到0.1厘米)
 ACBCABrLs
图甲   0.6  
图乙  5.01.0  
(2)观察图形,利用上表实验数据分析、猜测特殊三角形的r与L、S之间关系,并证明这种关系对任意三角形(图丙)是否也成立?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.