如图,已知正方形OABC在直角坐标系xOy中,点A、C分别在x轴、y轴的正半轴上,点O在坐标原点.等腰直角三角板OEF的直角顶点O在原点,E、F分别在OA、OC上,且OA=4,OE=2.将三角板OEF绕O点逆时针旋转至OE
1F
1的位置,连接CF
1、AE
1.
(1)求证:△OAE
1≌△OCF
1;
(2)若三角板OEF绕O点逆时针旋转一周,是否存在某一位置,使得OE∥CF?若存在,请求出此时E点坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.
(1)如果折痕FG分别与AD、AB交于点F、G(如图1),AF=
,求DE的长;
(2)如果折痕FG分别与CD、AB交于点F、G(如图2),△AED的外接圆与直线BC相切,求折痕FG的长.
查看答案
在下图中,直线l所对应的函数关系式为y=-
x+5,l与y轴交于点C,O为坐标原点.
(1)请直接写出线段OC的长;
(2)已知图中A点在x轴的正半轴上,四边形OABC为矩形,边AB与直线l相交于点D,沿直线l把△CBD折叠,点B恰好落在AC上一点E处,并且EA=1.
①试求点D的坐标;
②若⊙P的圆心在线段CD上,且⊙P既与直线AC相切,又与直线DE相交,设圆心P的横坐标为m,试求m的取值范围.
查看答案
如图,在平面直角坐标系中,A,B两点的坐标分别为A(-2,0),B(8,0),以AB为直径的半圆与y轴交于点M,以AB为一边作正方形ABCD.
(1)求C,M两点的坐标;
(2)连接CM,试判断直线CM是否与⊙P相切?说明你的理由;
(3)在x轴上是否存在一点Q,使得△QMC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案
如图,已知⊙O及⊙O外的一点P.
(1)求作:过点P的⊙O的切线;
(要求:作图要利用直尺和圆规,不写作法,但要保留作图痕迹)
(2)若⊙O的半径为2,OP=6,求切线长.
查看答案
如图,在Rt△ABC中,∠C=90°,AD是∠BAC的角平分线,以AB上一点O为圆心,AD为弦作⊙O.
(1)在图中作出⊙O(不写作法,保留作图痕迹);
(2)求证:BC为⊙O的切线;
(3)若AC=3,tanB=
,求⊙O的半径长.
查看答案