满分5 > 初中数学试题 >

正方形网格中,每个小正方形的边长为1个单位,以O为原点建立平面直角坐标系.圆心为...

正方形网格中,每个小正方形的边长为1个单位,以O为原点建立平面直角坐标系.圆心为A(3,0)的⊙A被y轴截得的弦长BC=8,如图所示.解答下列问题:
(1)⊙A的半径为______
(2)请在图中将⊙A先向上平移6个单位,再向左平移8个单位得到⊙D,观察你所画的图形知⊙D的圆心D点的坐标是______);⊙D与x轴的位置关系是______;⊙D与y轴的位置关系是______;⊙D与⊙A的位置关系是______
(3)画出以点E(-8,0)为位似中心,将⊙D缩小为原来的manfen5.com 满分网的⊙F.manfen5.com 满分网
(1)连接AC,根据勾股定理可求得半径. (2)根据平移的性质,先找到圆心的坐标,再以5为半径作圆即可. (3)先从圆D上找到三点,最好在格点上,然后依次连接点E,并延长使其位置为原线段的一半,找到新的三点,利用三点确定一个圆,找到新圆的圆心,过这三个作圆作圆即可. 【解析】 (1)半径==5 (2) (-5,6);相离;相切;外切; (3)
复制答案
考点分析:
相关试题推荐
如图,梯形ABCD内接于⊙O,AD∥BC,过点C作⊙O的切线,交BD的延长线于点P,交AD的延长线于点E,若AD=5,AB=6,BC=9.
(1)求DC的长;
(2)求证:四边形ABCE是平行四边形.

manfen5.com 满分网 查看答案
如图,已知直角三角形ABC,
(Ⅰ)试作出经过点A,圆心O在斜边AB上,且与边BC相切于点E的⊙O及切点E和圆心O(要求:用尺规作图,保留作图痕迹,不写作法和证明);
(Ⅱ)设(Ⅰ)中所作的⊙O与边AB交于异于点A的另一点D.
求证:
(1)manfen5.com 满分网
(2)EC•BE=AC•BD.

manfen5.com 满分网 查看答案
如图1,线段PB过圆心O,交圆O于A,B两点,PC切圆O于点C,作AD⊥PC,垂足为D,连接AC,BC.
(1)写出图1中所有相等的角(直角除外),并给出证明;
(2)若图1中的切线PC变为图2中割线PCE的情形,PCE与圆O交于C,E两点,AE与BC交于点M,AD⊥PE,写出图2中相等的角(写出三组即可,直角除外);
(3)在图2中,证明:AD•AB=AC•AE.

manfen5.com 满分网 查看答案
如图,已知⊙O的直径AB=2,直线m与⊙O相切于点A,P为⊙O上一动点(与点A、点B不重合),PO的延长线与⊙O相交于点C,过点C的切线与直线m相交于点D.
(1)求证:△APC∽△COD;
(2)设AP=x,OD=y,试用含x的代数式表示y;
(3)试探索x为何值时,△ACD是一个等边三角形.

manfen5.com 满分网 查看答案
如图,B为线段AD上一点,△ABC和△BDE都是等边三角形,连接CE并延长,交AD的延长线于F,△ABC的外接圆⊙O交CF于点M.
(1)求证:BE是⊙O的切线;
(2)求证:AC2=CM•CF;
(3)过点D作DG∥BE交EF于点G,过G作GH∥DE交DF于点H,则易知△DHG是等边三角形;设等边△ABC、△BDE、△DHG的面积分别为S1、S2、S3,试探究S1、S2、S3之间的数量关系,并说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.