满分5 > 初中数学试题 >

如图,已知:AC是⊙O的直径,PA⊥AC,连接OP,弦CB∥OP,直线PB交直线...

如图,已知:AC是⊙O的直径,PA⊥AC,连接OP,弦CB∥OP,直线PB交直线AC于D,BD=2PA.
(1)证明:直线PB是⊙O的切线;
(2)探究线段PO与线段BC之间的数量关系,并加以证明;
(3)求sin∠OPA的值.

manfen5.com 满分网
(1)连接OB.证OB⊥PB即可.通过证明△POB≌△POA得证. (2)根据切线长定理PA=PB.BD=2PA,则BD=2PB,即BD:PD=2:3. 根据BC∥OP可得△DBC∽△DPO,从而得出线段PO与线段BC之间的数量关系. (3)根据三角函数的定义即求半径与OP的比值.设OA=x,PA=y.则OD=3x,OB=x,BD=2y.在△BOD中可求y与x的关系,进而在△POB中求OP与x的关系,从而求比值得解. (1)证明:连接OB. ∵BC∥OP, ∴∠BCO=∠POA,∠CBO=∠POB, ∴∠POA=∠POB,(1分) 又∵PO=PO,OB=OA, ∴△POB≌△POA.                                            (3分) ∴∠PBO=∠PAO=90°. ∴PB是⊙O的切线.                                           (4分) (2)【解析】 2PO=3BC.(写PO=BC亦可) 证明:∵△POB≌△POA,∴PB=PA.                             (5分) ∵BD=2PA,∴BD=2PB. ∵BC∥PO,∴△DBC∽△DPO.                                   (6分) ∴, ∴2PO=3BC.                                                 (7分) (3)【解析】 ∵CB∥OP, ∴△DBC∽△DPO, ∴, 即DC=OD. ∴OC=OD, ∴DC=2OC.                                                (8分) 设OA=x,PA=y.则OD=3x,OB=x,BD=2y. 在Rt△OBD中,由勾股定理得(3x)2=x2+(2y)2,即2x2=y2. ∵x>0,y>0, ∴y=x,OP==x.                             (9分) ∴sin∠OPA====.                           (10分)
复制答案
考点分析:
相关试题推荐
正方形网格中,每个小正方形的边长为1个单位,以O为原点建立平面直角坐标系.圆心为A(3,0)的⊙A被y轴截得的弦长BC=8,如图所示.解答下列问题:
(1)⊙A的半径为______
(2)请在图中将⊙A先向上平移6个单位,再向左平移8个单位得到⊙D,观察你所画的图形知⊙D的圆心D点的坐标是______);⊙D与x轴的位置关系是______;⊙D与y轴的位置关系是______;⊙D与⊙A的位置关系是______
(3)画出以点E(-8,0)为位似中心,将⊙D缩小为原来的manfen5.com 满分网的⊙F.manfen5.com 满分网
查看答案
如图,梯形ABCD内接于⊙O,AD∥BC,过点C作⊙O的切线,交BD的延长线于点P,交AD的延长线于点E,若AD=5,AB=6,BC=9.
(1)求DC的长;
(2)求证:四边形ABCE是平行四边形.

manfen5.com 满分网 查看答案
如图,已知直角三角形ABC,
(Ⅰ)试作出经过点A,圆心O在斜边AB上,且与边BC相切于点E的⊙O及切点E和圆心O(要求:用尺规作图,保留作图痕迹,不写作法和证明);
(Ⅱ)设(Ⅰ)中所作的⊙O与边AB交于异于点A的另一点D.
求证:
(1)manfen5.com 满分网
(2)EC•BE=AC•BD.

manfen5.com 满分网 查看答案
如图1,线段PB过圆心O,交圆O于A,B两点,PC切圆O于点C,作AD⊥PC,垂足为D,连接AC,BC.
(1)写出图1中所有相等的角(直角除外),并给出证明;
(2)若图1中的切线PC变为图2中割线PCE的情形,PCE与圆O交于C,E两点,AE与BC交于点M,AD⊥PE,写出图2中相等的角(写出三组即可,直角除外);
(3)在图2中,证明:AD•AB=AC•AE.

manfen5.com 满分网 查看答案
如图,已知⊙O的直径AB=2,直线m与⊙O相切于点A,P为⊙O上一动点(与点A、点B不重合),PO的延长线与⊙O相交于点C,过点C的切线与直线m相交于点D.
(1)求证:△APC∽△COD;
(2)设AP=x,OD=y,试用含x的代数式表示y;
(3)试探索x为何值时,△ACD是一个等边三角形.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.