满分5 > 初中数学试题 >

如图,AB为⊙O的直径,且弦CD⊥AB于E,过点B的切线与AD的延长线交于点F....

manfen5.com 满分网如图,AB为⊙O的直径,且弦CD⊥AB于E,过点B的切线与AD的延长线交于点F.
(1)若M是AD的中点,连接ME并延长ME交BC于N.求证:MN⊥BC.
(2)若cos∠C=manfen5.com 满分网,DF=3,求⊙O的半径.
(1)连接AC.欲求MN⊥BC,只需证MN∥AC即可.由于直径AB⊥CD,由垂径定理知E是CD中点,而M是AD的中点,故EM是△ACD的中位线,可得ME(即MN)∥AC,由此得证. (2)由于∠A、∠C所对的弧相同,因此cosA=cosC,由此可得BF、AF、AB的比例关系,用未知数表示出它们的长. 连接BD,证△BDF∽△ABF,根据所得比例线段即可求得未知数的值(也可利用切割线定理求解),从而得到直径AB的长,也就能求出⊙O的半径. (1)证明: (方法一)连接AC. ∵AB是⊙O的直径,且AB⊥CD于E, 由垂径定理得,点E是CD的中点; 又∵M是AD的中点, ∴ME是△DAC的中位线, ∴MN∥AC. ∵AB是⊙O的直径,∴∠ACB=90°. ∴∠MNB=90°,即MN⊥BC; (方法二)∵AB⊥CD,∴∠AED=∠BEC=90°. M是AD的中点, ∴ME=AM,即有∠MEA=∠A. ∵∠MEA=∠BEN,∠C=∠A, ∴∠C=∠BEN. 又∵∠C+∠CBE=90°, ∴∠CBE+∠BEN=90°, ∴∠BNE=90°,即MN⊥BC; (方法三)∵AB⊥CD,∴∠AED=90°. 由于M是AD的中点, ∴ME=MD,即有∠MED=∠EDM. 又∵∠CBE与∠EDA同对,∴∠CBE=∠EDA. ∵∠MED=∠NEC, ∴∠NEC=∠CBE. ∵∠C+∠CBE=90°, ∴∠NEC+∠C=90°, 即有∠CNE=90°,即MN⊥BC. (2)【解析】 连接BD. ∵∠BCD与∠BAF同对,∴∠C=∠A, ∴cos∠A=cos∠C=. ∵BF是⊙O的切线,∴∠ABF=90°. 在Rt△ABF中,cos∠A==, 设AB=4x,则AF=5x,由勾股定理得:BF=3x. ∵AB是⊙O的直径,∴BD⊥AD, ∴△ABF∽△BDF, ∴, 即, x=. ∴直径AB=4x=4×, 则⊙O的半径为.
复制答案
考点分析:
相关试题推荐
如图,将含30°角的直角三角板ABC(∠A=30°)绕其直角顶点C顺时针旋转α角(0°<α<90°),得到Rt△A′B′C,A′C与AB交于点D,过点D作DE∥A′B′交CB′于点E,连接BE.易知,在旋转过程中,△BDE为直角三角形.设BC=1,AD=x,△BDE的面积为S.
(1)当α=30°时,求x的值.
(2)求S与x的函数关系式,并写出x的取值范围;
(3)以点E为圆心,BE为半径作⊙E,当S=manfen5.com 满分网时,判断⊙E与A′C的位置关系,并求相应的tanα值.

manfen5.com 满分网 查看答案
如图,已知:AC是⊙O的直径,PA⊥AC,连接OP,弦CB∥OP,直线PB交直线AC于D,BD=2PA.
(1)证明:直线PB是⊙O的切线;
(2)探究线段PO与线段BC之间的数量关系,并加以证明;
(3)求sin∠OPA的值.

manfen5.com 满分网 查看答案
正方形网格中,每个小正方形的边长为1个单位,以O为原点建立平面直角坐标系.圆心为A(3,0)的⊙A被y轴截得的弦长BC=8,如图所示.解答下列问题:
(1)⊙A的半径为______
(2)请在图中将⊙A先向上平移6个单位,再向左平移8个单位得到⊙D,观察你所画的图形知⊙D的圆心D点的坐标是______);⊙D与x轴的位置关系是______;⊙D与y轴的位置关系是______;⊙D与⊙A的位置关系是______
(3)画出以点E(-8,0)为位似中心,将⊙D缩小为原来的manfen5.com 满分网的⊙F.manfen5.com 满分网
查看答案
如图,梯形ABCD内接于⊙O,AD∥BC,过点C作⊙O的切线,交BD的延长线于点P,交AD的延长线于点E,若AD=5,AB=6,BC=9.
(1)求DC的长;
(2)求证:四边形ABCE是平行四边形.

manfen5.com 满分网 查看答案
如图,已知直角三角形ABC,
(Ⅰ)试作出经过点A,圆心O在斜边AB上,且与边BC相切于点E的⊙O及切点E和圆心O(要求:用尺规作图,保留作图痕迹,不写作法和证明);
(Ⅱ)设(Ⅰ)中所作的⊙O与边AB交于异于点A的另一点D.
求证:
(1)manfen5.com 满分网
(2)EC•BE=AC•BD.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.