满分5 > 初中数学试题 >

如图,⊙O1和⊙O2外切于点P,直线AB是两圆的外公切线,A,B为切点,试判断以...

如图,⊙O1和⊙O2外切于点P,直线AB是两圆的外公切线,A,B为切点,试判断以线段AB为直径的圆与直线O1O2的位置关系,并说明理由.

manfen5.com 满分网
先找到以线段AB为直径的圆的圆心M点.根据切线长定理,知即为过P作圆O1,圆O2的公切线PM,交AB于M点;再根据公切线和切线长定理,可知直线O1O2与以线段AB为直径的圆相切. 【解析】 直线O1O2与以线段AB为直径的圆相切.理由如下: 过P作圆O1,圆O2的公切线PM,交AB于M点, 则AM=MB=MP,O1O2⊥MP. ∴M点为以线段AB为直径的圆的圆心,且点P在圆M上. ∵圆O1和圆O2外切于点P, ∴直线O1O2过点P, ∴直线O1O2与以线段AB为直径的圆相切.
复制答案
考点分析:
相关试题推荐
如图,在内切的两圆中,设C为小圆的圆心,O为大圆的圆心,P为切点,⊙O的弦PQ和⊙C相交于R,过点R作⊙C的切线与⊙O交于A、B两点,求证:Q是弧AB的中点.

manfen5.com 满分网 查看答案
如图,已知:⊙O1、⊙O2外切于点P,A是⊙O1上一点,直线AC切⊙O2于点C交⊙O1于点B,直线AP交⊙O2于点D.
(1)求证:PC平分∠BPD;
(2)将“⊙O1、⊙O2外切于点P”改为“⊙O1、⊙O2内切于点P”,其它条件不变.(1)中的结论是否仍然成立?画出图形并证明你的结论.
manfen5.com 满分网
查看答案
如图所示,分别按A、B两种方法用钢丝绳捆扎圆形钢管的截面图:设A、B两种方法捆扎所需的绳子的长分别为a、b(不计接头部分),则a、b的大小关系为:a______b.(填“<”“=“或“>”)

manfen5.com 满分网 查看答案
已知Rt△ABC中,∠ACB=90°,AC=6,BC=8.
(Ⅰ)如图①,若半径为r1的⊙O1是Rt△ABC的内切圆,求r1
(Ⅱ)如图②,若半径为r2的两个等圆⊙O1、⊙O2外切,且⊙O1与AC、AB相切,⊙O2与BC、AB相切,求r2
(Ⅲ)如图③,当n大于2的正整数时,若半径rn的n个等圆⊙O1、⊙O2、…、⊙On依次外切,且⊙O1与AC、BC相切,⊙On与BC、AB相切,⊙O1、⊙O2、⊙O3、…、⊙On-1均与AB边相切,求rnmanfen5.com 满分网
查看答案
如图是某城市一个主题雕塑的平面示意图,它由置放于地面l上两个半径均为2米的半圆与半径为4米的⊙A构成.点B、C分别是两个半圆的圆心,⊙A分别与两个半圆相切于点E、F,BC长为8米.求EF的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.