满分5 > 初中数学试题 >

问题背景:某课外学习小组在一次学习研讨中,得到了如下两个命题: ①如图1,在正三...

问题背景:某课外学习小组在一次学习研讨中,得到了如下两个命题:
manfen5.com 满分网manfen5.com 满分网
①如图1,在正三角形ABC中,M,N分别是AC,AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;
②如图2,在正方形ABCD中,M,N分别是CD,AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.
然后运用类比的思想提出了如下命题;
③如图3,在正五边形ABCDE中,M,N分别是CD,DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:
(1)请你从①,②,③三个命题中选择一个进行证明;
(2)请你继续完成下面的探索:
①如图4,在正n(n≥3)边形ABCDEF…中,M,N分别是CD,DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立;(不要求证明)
②如图5,在正五边形ABCDE中,M,N分别是DE,AE上的点,BM与CN相交于点O,若∠BON=108°时,试问结论BM=CN是否还成立.若成立,请给予证明;若不成立,请说明理由.
(1)正三角形ABC中,可通过全等三角形来证明BM=CN,由于∠BON=∠MBC+∠BCO=60°,而∠ACB=∠ACN+∠OCB=60°,因此∠ACN=∠MBC,又知道∠A=∠BCM=60°,AC=BC,因此△ACN≌△CBM,可得出BM=CN;正方形和正五边形的证明过程与正三角形的一样,都是通过全等三角形来得出线段的相等,证三角形的过程中都是根据∠BON和多边形的内角相等得出一组两三角形中的一组对应角相等,然后根据正多边形的内角和边相等,得出BCM和CND全等,进而得出BM=CN;(2)①由(1)的证明过程可知道∠MON的度数应该是正多边形的内角的度数,当∠BON=时,结论BM=CN成立, ②可参照(1)先得出三角形BCD和CDE全等,然后通过证三角形CEN和BDM全等来得出结论,在证三角形CEN和BDM全等的过程中也是通过∠BON与正五边形的内角相等得出一组对应角相等,然后根据正五边形的内角减去第一对全等三角形中得出的相等角来得出另一组对应角相等,可通过△BCD≌△CDE得出CE=BD,那么可得出三角形CEN和BDM全等,由此可得证. 【解析】 (1)选命题① 在图1中,∵△ABC是正三角形, ∴BC=CA,∠BCM=∠CAN=60°. ∵∠BON=60°, ∴∠CBM+∠BCN=60°. ∵∠BCN+∠ACN=60°, ∴∠CBM=∠ACN. ∴△BCM≌△CAN(ASA). ∴BM=CN. 选命题② 在图2中∵四边形ABCD是正方形, ∴BC=CD,∠BCM=∠CDN=90°. ∵∠BON=90°, ∴∠CBM+∠BCN=90°. ∵∠BCN+∠DCN=90°, ∴∠CBM=∠DCN. ∴△BCM≌△CDN(ASA). ∴BM=CN. 选命题③ 在图3中,∵五边形ABCDE是正五边形, ∴BC=CD,∠BCM=∠CDN=108°. ∵∠BON=108°, ∴∠CBM+∠BCN=108°. ∵∠BCN+∠DCN=108°, ∴∠CBM=∠DCN. ∴△BCM≌△CDN(ASA). ∴BM=CN. (2)①当∠BON=时,结论BM=CN成立. ②BM=CN成立. 在图5中,连接BD、CE, ∵五边形ABCDE是正五边形, ∴BC=CD,∠BCD=∠CDE=108°,CD=DE,∠CDE=∠DEA=108°. ∴∠BCD=∠DEA, ∴△BCD≌△CDE(SAS). ∴BD=CE,∠BDC=∠CED,∠DBC=∠ECD. ∵∠BON=108°, ∴∠OBC+∠OCB=108°. ∵∠OCB+∠OCD=108°, ∴∠OBC=∠OCD(即∠MBC=∠NCD). ∴∠MBC-∠DBC=∠NCD-∠ECD,即∠DBM=∠ECN. ∴∠CDE-∠BDC=∠DEA-∠CED,即∠BDM=∠CEN. ∴△BDM≌△CEN(ASA). ∴BM=CN.
复制答案
考点分析:
相关试题推荐
已知抛物线y=ax2+bx-1经过点A(-1,0)、B(m,0)(m>0),且与y轴交于点C.
(1)求a、b的值(用含m的式子表示);
(2)如图所示,⊙M过A、B、C三点,求阴影部分扇形的面积S(用含m的式子表示);
(3)在x轴上方,若抛物线上存在点P,使得以A、B、P为顶点的三角形与△ABC相似,求m的值.

manfen5.com 满分网 查看答案
一园林设计师要使用长度为4L的材料建造如图1所示的花圃,该花圃是由四个形状、大小完全一样的扇环面组成,每个扇环面如图2所示,它是以点O为圆心的两个同心圆弧和延长后通过O点的两条直线段围成,为使得绿化效果最佳,还须使得扇环面积最大.
(1)求使图1花圃面积为最大时R-r的值及此时花圃面积,manfen5.com 满分网其中R、r分别为大圆和小圆的半径;
(2)若L=160m,r=10m,求使图2面积为最大时的θ值.
查看答案
如图①、②、③是两个半径都等于2的⊙O1和⊙O2,由重合状态沿水平方向运动到互相外切过程中的三个位置,⊙O1和⊙O2相交于A、B两点,分别连接O1A、O1B、O2A、O2B和AB.
(1)如图②,当∠AO1B=120°时,求两圆重叠部分图形的周长l;
(2)设∠AO1B的度数为x,两圆重叠部分图形的周长为y,求y关于x的函数关系式,并写出自变量x的取值范围;
(3)由(2),若y=2π,则线段O2A所在的直线与⊙O1有何位置关系,为什么?除此之外,它们还有其它的位置关系,写出其它位置关系时x的取值范围.(奖励提示:如果你还能解决下列问题,将酌情另加1~5分,并计入总分.)
在原题的条件下,设∠AO1B的度数为2n,可以发现有些图形的面积S也随∠AO1B变化而变化,试求出其中一个S与n的关系式,并写出n的取值范围.
manfen5.com 满分网
查看答案
某市为了进一步改善居民的生活环境,园林处决定增加公园A和公园B的绿化面积.已知公园A,B分别有如图1,图2所示的阴影部分需铺设草坪,在甲、乙两地分别有同种草皮1608m2和1200m2出售,且售价一样.若园林处向甲、乙两地购买草皮,其路程和运费单价见下表:
  公园A 公园B
 路程(千米) 运费单价(元)路程(千米) 运费单价(元) 
甲地  30 0.25 32 0.25
 乙地 22 0.3 30 0.3
(注:运费单价指将每平方米草皮运送1千米所需的人民币)
manfen5.com 满分网
(1)分别求出公园A,B需铺设草坪的面积;(结果精确到1m2
(2)请设计出总运费最省的草皮运送方案,并说明理由.
查看答案
时钟上的分针经过25分钟后扫过的钟面面积是15πcm2,则分针的长是    cm. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.