满分5 > 初中数学试题 >

如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点M,MN⊥AC于点N...

如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点M,MN⊥AC于点N.
(1)求证:MN是⊙O的切线;
(2)若∠BAC=120°,AB=2,求图中阴影部分的面积.

manfen5.com 满分网
(1)有切点,需连半径,证明垂直,即可; (2)求阴影部分的面积要把它转化成S梯形ANMO-S扇形OAM,再分别求的这两部分的面积求解. (1)证明:连接OM. ∵OM=OB, ∴∠B=∠OMB. ∵AB=AC, ∴∠B=∠C. ∴∠OMB=∠C. ∴OM∥AC. ∵MN⊥AC, ∴OM⊥MN. ∵点M在⊙O上, ∴MN是⊙O的切线.(5分) (2)【解析】 连接AM. ∵AB为直径,点M在⊙O上, ∴∠AMB=90°. ∵AB=AC,∠BAC=120°, ∴∠B=∠C=30°. ∴∠AOM=60°. 又∵在Rt△AMC中,MN⊥AC于点N, ∴∠AMN=30°. ∴AN=AM•sin∠AMN=AC•sin30°•sin30°=. ∴MN=AM•cos∠AMN=AC•sin30°•cos30°=.  (8分) ∴S梯形ANMO=, S扇形OAM=, ∴S阴影==-.    (11分)
复制答案
考点分析:
相关试题推荐
已知:如图,在锐角∠MAN的边AN上取一点B,以AB为直径的半圆O交AM于C,交∠MAN的角平分线于E,过点E作ED⊥AM,垂足为D,反向延长ED交AN于F.
(1)猜想ED与⊙O的位置关系,并说明理由;
(2)若cos∠MAN=manfen5.com 满分网,AE=manfen5.com 满分网,求阴影部分的面积.

manfen5.com 满分网 查看答案
如图,△OAB中,OA=OB,∠A=30°,⊙O经过AB的中点E分别交OA、OB于C、D两点,连接CD.
(1)求证:AB是⊙O的切线.
(2)求证:CD∥AB.
(3)若CD=4manfen5.com 满分网,求扇形OCED的面积.

manfen5.com 满分网 查看答案
如图,⊙O的直径AB=12,manfen5.com 满分网的长为2π,D在OC的延长线上,且CD=OC.
(1)求∠A的度数;
(2)求证:DB是⊙O的切线.
(参考公式:弧长公式l=manfen5.com 满分网,其中l是弧长,r是半径,n是圆心角度数)

manfen5.com 满分网 查看答案
如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于D、E两点,过点D作DF⊥AC,垂足为点F.
(1)求证:DF是⊙O的切线;
(2)若manfen5.com 满分网,DF=2,求manfen5.com 满分网的长.

manfen5.com 满分网 查看答案
如图,AB切⊙O于点B,OA交⊙O于C点,过C作DC⊥OA交AB于D,且BD:AD=1:2.
(1)求∠A的正切值;
(2)若OC=1,求AB及manfen5.com 满分网的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.