满分5 > 初中数学试题 >

(1)操作:如图2,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心角...

(1)操作:如图2,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心角为直角的扇形纸板的圆心放在O点处,并将纸板绕O点旋转.求证:正方形ABCD的边被纸板覆盖部分的总长度为定值a.
(2)思考:如图1,将一块半径足够长的扇形纸板的圆心放在边长为a的正三角形或边长为a的正五边形的中心O点处,并将纸板绕O点旋转.当扇形纸板的圆心角为______时,正三角形的边被纸板覆盖部分的总长度为定值a;如图3,当扇形纸板的圆心角为______时,正五边形的边被纸板覆盖部分的总长度为定值a.(直接填空)
(3)探究:一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,并将纸板绕O点旋转,当扇形纸板的圆心角为______度时,正n边形的边被纸板覆盖部分的总长度为定值a;这时正n边形被纸板覆盖部分的面积是否也为定值?若为定值,写出它与正n边形面积S之间的关系(不需证明);若不是定值,请说明理由.
manfen5.com 满分网
(1)如图,连接OA、OD,由正方形的性质证得△AOE≌△DOF,有AE=DF,即被纸板覆盖部分的总长度为AF+EA=AF+DF=AD=a为定值. (2)在等边三角形△ABC中,连接OB,OB,当△OCE≌△OBD时,有OD+OE+CD+CE+OB+OC+BC为定值.此时∠DOE=∠BOC=120°;同理在正五边形中,∠FOG=∠DOE=72° (3)由(1)(2)可以推得当在扇形纸板的圆心角为时,正n边形的边被纸板覆盖部分的总长度为定值a;此时正n边形被纸板覆盖部分的面积是定值,等于以正多边形一边与中心构成的三角形的面积,且为. 【解析】 (1)在正方形ABCD中,设扇形两半径交AB、AD分别于E、F, 作连接OA、OD. ∵O是正方形ABCD的中心, ∴OA=OD,∠OAD=∠ODA=45°, ∴∠AOD=90°.(1分) ∵扇形的圆心角∠EOF=90°, ∴∠AOE+∠AOF=∠DOF+∠AOF, ∴∠AOE=∠DOF,(2分) ∴△AOE≌△DOF(ASA),(3分) ∴AE=DF.(4分) 所以被纸板覆盖部分的总长度为AF+EA=AF+DF=AD=a为定值.(5分) (2)在等边三角形△ABC中,连接OB,OC,当△OCE≌△OBD时,有OD+OE+CD+CE+OB+OC+BC为定值.此时∠DOE=∠BOC=360°÷3=120°. 同理在正五边形中,∠FOG=∠DOE=360°÷5=72°. (3)圆心角为,(8分) 是定值,被纸板覆盖部分的面积是.(10分) 故答案为:120°;72°;.
复制答案
考点分析:
相关试题推荐
如图,有一个圆O和两个正六边形T1,T2. T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).
(1)设T1,T2的边长分别为a,b,圆O的半径为r,求r:a及r:b的值;
(2)求正六边形T1,T2的面积比S1:S2的值.

manfen5.com 满分网 查看答案
如图,⊙O1、⊙O2、⊙O3、⊙O4的半径都为1,其中⊙O1和⊙O2外切,⊙O2、⊙O3,⊙O4两两外切,并且O1、O2、O3、三点在同一直线上.
(1)请直接写出O2O4的长;
(2)若⊙O1沿图中箭头所示的方向在⊙O2的圆周上滚动,最后⊙O1滚动到⊙O4的位置上,试求在上述滚动过程中圆心O1移动的距离.(精确到0.01)
manfen5.com 满分网
查看答案
如图,CA和CB都是⊙O的切线,切点分别为A、B,连接OC交弦AB于点D已知⊙O的半径为4,弦AB=manfen5.com 满分网
(1)求证:OC垂直平分AB;
(2)求劣弧manfen5.com 满分网的长.

manfen5.com 满分网 查看答案
如图,△ABO中,OA=OB,以O为圆心的圆经过AB的中点C,且分别交OA、OB于点E、F.
(1)求证:AB是⊙O的切线;
(2)若△ABO腰上的高等于底边的一半,且manfen5.com 满分网,求manfen5.com 满分网的长.

manfen5.com 满分网 查看答案
已知:AB是⊙O的直径,点C是⊙O外的一点,点E是AC上一点,AB=2.
(1)如图1,点D是BC的中点,当DE也AC满足什么关系时,DE是⊙O的切线?请说明理由.
(2)如图2,AC是⊙O的切线,点E是AC的中点DE∥AB.①求manfen5.com 满分网的值;②求阴影部分的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.