满分5 > 初中数学试题 >

如图,六边形ABCDEF内接于半径为r(常数)的⊙O,其中AD为直径,且AB=C...

如图,六边形ABCDEF内接于半径为r(常数)的⊙O,其中AD为直径,且AB=CD=DE=FA.
(1)当∠BAD=75°时,求manfen5.com 满分网的长;
(2)求证:BC∥AD∥FE;
(3)设AB=x,求六边形ABCDEF的周长L关于x的函数关系式,并指出x为何值时,L取得最大值.

manfen5.com 满分网
(1)本题要靠辅助线的帮助.连接OB、OC,证明∠COD=∠AOB即可. (2)连接BD,由(1)得BC∥AD,EF∥AD推出BC∥AD∥FE. (3)过点B作BM⊥AD于M,由(2)得出四边形ABCD为等腰梯形,证明△BAM∽△DAB.得出AM、BC、EF的关系然后可求出L的最大值. (1)【解析】 连接OB、OC,由∠BAD=75°,OA=OB知∠AOB=30°, ∵AB=CD,∴∠COD=∠AOB=30°, ∴∠BOC=120°,(2分) 故的长为.(3分) (2)证明:连接BD,∵AB=CD, ∴弧AB=弧CD, ∴∠ADB=∠CBD,∴BC∥AD,(5分) 同理EF∥AD,从而BC∥AD∥FE.(6分) (3)【解析】 过点B作BM⊥AD于M,由(2)知四边形ABCD为等腰梯形,从而BC=AD-2AM=2r-2AM.(7分) ∵AD为直径,∴∠ABD=90°,易得△BAM∽△DAB,∴AM:AB=AB:AD, ∴AM==,∴BC=2r-,同理EF=2r-,(8分) ∴L=4x+2(2r-)=-x2+4x+4r=-(x-r)2+6r,其中0<x<,(9分) ∴当x=r时,L取得最大值6r.(10分)
复制答案
考点分析:
相关试题推荐
(1)操作:如图2,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心角为直角的扇形纸板的圆心放在O点处,并将纸板绕O点旋转.求证:正方形ABCD的边被纸板覆盖部分的总长度为定值a.
(2)思考:如图1,将一块半径足够长的扇形纸板的圆心放在边长为a的正三角形或边长为a的正五边形的中心O点处,并将纸板绕O点旋转.当扇形纸板的圆心角为______时,正三角形的边被纸板覆盖部分的总长度为定值a;如图3,当扇形纸板的圆心角为______时,正五边形的边被纸板覆盖部分的总长度为定值a.(直接填空)
(3)探究:一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,并将纸板绕O点旋转,当扇形纸板的圆心角为______度时,正n边形的边被纸板覆盖部分的总长度为定值a;这时正n边形被纸板覆盖部分的面积是否也为定值?若为定值,写出它与正n边形面积S之间的关系(不需证明);若不是定值,请说明理由.
manfen5.com 满分网
查看答案
如图,有一个圆O和两个正六边形T1,T2. T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).
(1)设T1,T2的边长分别为a,b,圆O的半径为r,求r:a及r:b的值;
(2)求正六边形T1,T2的面积比S1:S2的值.

manfen5.com 满分网 查看答案
如图,⊙O1、⊙O2、⊙O3、⊙O4的半径都为1,其中⊙O1和⊙O2外切,⊙O2、⊙O3,⊙O4两两外切,并且O1、O2、O3、三点在同一直线上.
(1)请直接写出O2O4的长;
(2)若⊙O1沿图中箭头所示的方向在⊙O2的圆周上滚动,最后⊙O1滚动到⊙O4的位置上,试求在上述滚动过程中圆心O1移动的距离.(精确到0.01)
manfen5.com 满分网
查看答案
如图,CA和CB都是⊙O的切线,切点分别为A、B,连接OC交弦AB于点D已知⊙O的半径为4,弦AB=manfen5.com 满分网
(1)求证:OC垂直平分AB;
(2)求劣弧manfen5.com 满分网的长.

manfen5.com 满分网 查看答案
如图,△ABO中,OA=OB,以O为圆心的圆经过AB的中点C,且分别交OA、OB于点E、F.
(1)求证:AB是⊙O的切线;
(2)若△ABO腰上的高等于底边的一半,且manfen5.com 满分网,求manfen5.com 满分网的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.