满分5 > 初中数学试题 >

已知多边形ABDEC是由边长为2的等边三角形ABC和正方形BDEC组成,一圆过A...

已知多边形ABDEC是由边长为2的等边三角形ABC和正方形BDEC组成,一圆过A、D、E三点,求该圆半径的长.

manfen5.com 满分网
作AF⊥BC,垂足为F,并延长交DE于H点.根据其轴对称性,则圆心必定在AH上.设其圆心是O,连接OD,OE.根据等边三角形的性质和正方形的性质,可以求得AH,DH的长,设圆的半径是r.在直角三角形BOH中,根据勾股定理列方程求解. 【解析】 如图2,作AF⊥BC,垂足为F,并延长AF交DE于H点.(1分) ∵△ABC为等边三角形, ∴AF垂直平分BC, ∵四边形BDEC为正方形, ∴AH垂直平分正方形的边DE.(3分) 又∵DE是圆的弦, ∴AH必过圆心,记圆心为O点,并设⊙O的半径为r. 在Rt△ABF中, ∵∠BAF=30°, ∴AF=AB•cos30°=2×. ∴OH=AF+FH-OA=-r.(5分) 在Rt△ODH中,OH2+DH2=OD2. ∴(2+-r)2+12=r2. 解得r=2.(7分) ∴该圆的半径长为2.(8分)
复制答案
考点分析:
相关试题推荐
如图,在正五边形ABCDE中,连接对角线AC,AD和CE,AD交CE于F.
(1)请列出图中两对全等三角形____________.(不另外添加辅助线)
(2)请选择所列举的一对全等三角形加以证明.

manfen5.com 满分网 查看答案
如图,六边形ABCDEF内接于半径为r(常数)的⊙O,其中AD为直径,且AB=CD=DE=FA.
(1)当∠BAD=75°时,求manfen5.com 满分网的长;
(2)求证:BC∥AD∥FE;
(3)设AB=x,求六边形ABCDEF的周长L关于x的函数关系式,并指出x为何值时,L取得最大值.

manfen5.com 满分网 查看答案
(1)操作:如图2,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心角为直角的扇形纸板的圆心放在O点处,并将纸板绕O点旋转.求证:正方形ABCD的边被纸板覆盖部分的总长度为定值a.
(2)思考:如图1,将一块半径足够长的扇形纸板的圆心放在边长为a的正三角形或边长为a的正五边形的中心O点处,并将纸板绕O点旋转.当扇形纸板的圆心角为______时,正三角形的边被纸板覆盖部分的总长度为定值a;如图3,当扇形纸板的圆心角为______时,正五边形的边被纸板覆盖部分的总长度为定值a.(直接填空)
(3)探究:一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,并将纸板绕O点旋转,当扇形纸板的圆心角为______度时,正n边形的边被纸板覆盖部分的总长度为定值a;这时正n边形被纸板覆盖部分的面积是否也为定值?若为定值,写出它与正n边形面积S之间的关系(不需证明);若不是定值,请说明理由.
manfen5.com 满分网
查看答案
如图,有一个圆O和两个正六边形T1,T2. T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).
(1)设T1,T2的边长分别为a,b,圆O的半径为r,求r:a及r:b的值;
(2)求正六边形T1,T2的面积比S1:S2的值.

manfen5.com 满分网 查看答案
如图,⊙O1、⊙O2、⊙O3、⊙O4的半径都为1,其中⊙O1和⊙O2外切,⊙O2、⊙O3,⊙O4两两外切,并且O1、O2、O3、三点在同一直线上.
(1)请直接写出O2O4的长;
(2)若⊙O1沿图中箭头所示的方向在⊙O2的圆周上滚动,最后⊙O1滚动到⊙O4的位置上,试求在上述滚动过程中圆心O1移动的距离.(精确到0.01)
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.