满分5 > 初中数学试题 >

如图,已知:⊙O的直径AB与弦AC的夹角∠A=30°,过点C作⊙O的切线交AB的...

如图,已知:⊙O的直径AB与弦AC的夹角∠A=30°,过点C作⊙O的切线交AB的延长线于点P.
(1)求证:AC=CP;
(2)若PC=6,求图中阴影部分的面积(结果精确到0.1).
(参考数据:manfen5.com 满分网,π=3.14)

manfen5.com 满分网
(1)连接OC.根据圆周角定理即可求得∠COP=2∠ACO=60°,根据切线的性质定理以及直角三角形的两个锐角互余,求得∠P=30°,即可证明; (2)阴影部分的面积即为Rt△OCP的面积减去扇形OCB的面积. (1)证明:连接OC. ∵AB是⊙O的直径, ∴AO=OC, ∴∠ACO=∠A=30°. ∴∠COP=2∠ACO=60°. ∵PC切⊙O于点C, ∴OC⊥PC. ∴∠P=30°. ∴∠A=∠P. ∴AC=PC. (2)【解析】 在Rt△OCP中,tan∠P=,∴OC=2 ∵S△OCP=CP•OC=×6×2=且S扇形COB=2π, ∴S阴影=S△OCP-S扇形COB=.
复制答案
考点分析:
相关试题推荐
阅读下列材料,然后解答问题.
经过正四边形(即正方形)各顶点的圆叫作这个正四边形的外接圆,圆心是正四边形的对称中心,这个正四边形叫作这个圆的内接正四边形.
如图,已知正四边形ABCD的外接圆⊙O,⊙O的面积为S1,正四边形ABCD的面积为S2,以圆心O为顶点作∠MON,使∠MON=90°,将∠MON绕点O旋转,OM、ON分别与⊙O相交于点E、F,分别与正四边形ABCD的边相交于点G、H.设由OE、OF、manfen5.com 满分网及正四边形ABCD的边围成的图形(图中的阴影部分)的面积为S.①manfen5.com 满分网
(1)当OM经过点A时(如图①),则S、S1、S2之间的关系为:S=______(用含S1、S2的代数式表示);
(2)当OM⊥AB时(如图②),点G为垂足,则(1)中的结论仍然成立吗?请说明理由;
(3)当∠MON旋转到任意位置时(如图③),则(1)中的结论仍然成立吗?请说明理由.
查看答案
如图,在平面直角坐标系中,O为原点,每个小方格的边长为1个单位长度.在第一象限内有横、纵坐标均为整数的A、B两点,且OA=OB=manfen5.com 满分网
(1)写出A、B两点的坐标;
(2)画出线段AB绕点O旋转一周所形成的图形,并求其面积(结果保留π).

manfen5.com 满分网 查看答案
如图,已知△ABC中,AB=AC,∠A=36°.
(1)尺规作图:在AC上求作一点P,使BP+PC=AB;(保留作图痕迹,不写作法)
(2)在已作的图形中,连接PB,以点P为圆心,PB长为半径画弧交AC的延长线于点E,若BC=2cm,求扇形PBE的面积.

manfen5.com 满分网 查看答案
如图,在正方形ABCD中,AB=4,O为对角线BD的中点,分别以OB,OD为直径作⊙O1,⊙O2
(1)求⊙O1的半径;
(2)求图中阴影部分的面积.

manfen5.com 满分网 查看答案
圆心角都是90°的扇形OAB与扇形OCD如图所示那样叠放在一起,连接AC、BD.
(1)求证:△AOC≌△BOD;
(2)若OA=3cm,OC=1cm,求阴影部分的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.