满分5 > 初中数学试题 >

如图,已知⊙O的直径AB=8cm,直线DM与⊙O相切于点E,连接BE,过点B作B...

如图,已知⊙O的直径AB=8cm,直线DM与⊙O相切于点E,连接BE,过点B作BC⊥DM于点C,BC交⊙O于点F,BC=6cm.
求:
(1)线段BE的长;
(2)图中阴影部分的面积.

manfen5.com 满分网
(1)连接AE,易得∠AEB=90°,∠ECB=90°,那么∠AEB=∠ECB,根据弦切角定理得∠CEB=∠EAB,那么△AEB∽△ECB,由相似三角形的性质得BE2=AB•BC,从而求得BE的值; (2)连接OE,过点O作OG⊥BE于点G,易得BG=EG,根据特殊角的三角函数值知∠ABE=30°,所以可求得BO=4,OG=2,进而求得△EOB的面积,由于半径OE=OB,根据等边对等角得∠OEB=∠OBE=30°,由三角形的内角和定理得∠BOE=120°,则可求得扇形OBE的面积,再根据S阴影=S扇形OBE-S△EOB求得阴影部分的面积. 【解析】 (1)连接AE. ∵AB是⊙O的直径, ∴∠AEB=90°, 又∵BC⊥DM, ∴∠ECB=90°, ∴∠AEB=∠ECB, ∵直线DM与⊙O相切于点E, ∴∠CEB=∠EAB, ∴△AEB∽△ECB, ∴, ∴BE2=AB•BC, ∴BE=(cm); (2)连接OE,过点O作OG⊥BE于点G. ∴BG=EG, 在Rt△ABE中,cos∠ABE=, ∴∠ABE=30°, 在Rt△OBG中,∠ABE=30°,BO=4, ∴OG=2, ∴, ∵OE=OB, ∴∠OEB=∠OBE=30°, ∴∠BOE=120°, ∴S扇形OBE=, ∴S阴影=S扇形OBE-S△EOB=()cm2.
复制答案
考点分析:
相关试题推荐
在学习扇形的面积公式时,同学们推得S扇形=manfen5.com 满分网,并通过比较扇形面积公式与弧长公式l=manfen5.com 满分网,得出扇形面积的另一种计算方法S扇形=manfen5.com 满分网lR.接着老师让同学们解决两个问题:
问题Ⅰ:求弧长为4π,圆心角为120°的扇形面积.
问题Ⅱ:某小区设计的花坛形状如图中的阴影部分,已知AB和CD所在圆心都是点O,弧AB的长为l1,弧CD的长为l2,AC=BD=d,求花坛的面积.
(1)请你解答问题Ⅰ;
(2)在解完问题Ⅱ后的全班交流中,有位同学发现扇形面积公式S扇形=manfen5.com 满分网lR类似于三角形面积公式;类比梯形面积公式,他猜想花坛的面积S=manfen5.com 满分网(l1+l2)d.他的猜想正确吗?如果正确,写出推导过程;如果不正确,请说明理由.

manfen5.com 满分网 查看答案
某校编排的一个舞蹈需要五把和图1形状大小完全相同的绸扇.学校现有三把符合要求的绸扇,将这三把绸扇完全展开刚好组成图2所示的一朵圆形的花.请你算一算:再做两把这样的绸扇至少需要多少平方厘米的绸布?(单面制作,不考虑绸扇的折皱,结果用含л的式子表示)

manfen5.com 满分网 查看答案
如图,△ABC中,∠A=90°,BC=2cm,分别以点B、C为圆心的两个等圆相外切,求两个图中两个阴影扇形的面积之和.

manfen5.com 满分网 查看答案
如图,从一个直径是2的圆形铁皮中剪下一个圆心角为90°的扇形
(1)求这个扇形的面积(结果保留π)
(2)在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面与此扇形围成一个圆锥?请说明理由
(3)当⊙O的半径R(R>0)为任意值时,(2)中的结论是否仍然成立?请说明理由.

manfen5.com 满分网 查看答案
已知:B,C是线段AD上的两点,且AB=CD.分别为AB,BC,CD,AD为直径作四个半圆,得到一个如图所示的轴对称图形.此图的对称轴分别交其中两个半圆于M,N交AD于O.若AD=16,AB=2r(0<r<4),回答下列问题:
(1)用含r的代数式表示BC=______,MN=______
(2)设以MN为直径的圆的面积为S,阴影部分的面积为S阴影,请通过计算填写下表:
rSS阴影
r=149π
r=236π
r=325π
(3)由此表猜想S与S阴影的大小关系,并证明你的猜想.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.