满分5 > 初中数学试题 >

如图,矩形ABCD的长与宽分别是2cm和1cm,AB在直线L上.依次以B,C′,...

如图,矩形ABCD的长与宽分别是2cm和1cm,AB在直线L上.依次以B,C′,D″为中心将矩形ABCD按顺时针方向旋转90°,这样点A走过的曲线依次为manfen5.com 满分网,其中manfen5.com 满分网交CD于点P.
(1)求矩形A′BC′D′的对角线A′C′的长;
(2)求manfen5.com 满分网的长;
(3)求图中manfen5.com 满分网部分的面积.
(4)求图中manfen5.com 满分网部分的面积.

manfen5.com 满分网
(1)由于旋转得到的两个图形全等,求出矩形ABCD的对角线就是矩形A′BC′D′的对角线,利用勾股定理求解即可; (2)直接利用弧长公式计算就可以了,圆心角是90°; (3)连接A″C′,就会得到一个以半径A′C′的扇形,利用面积割补,可看出阴影部分面积就等于扇形面积. (4)连接BP,利用所给的矩形的边长,可得∠CPB的正弦值,故可求∠CPB,再利用平行可得到∠APB的度数,而阴影面积就等于扇形ABP与Rt△BPC的面积之和.因此可求得所求的面积. 【解析】 (1)由旋转得A′C′=AC==(cm). (2)的长为=π(cm). (3)由旋转的性质,△A′D′C′≌△A″D″C′, 故所求的面积S=S扇形C′A′A′′==π×()2=π(cm2). (4)连接BP,在Rt△BCP中,BC=1,BP=BA=2. ∴∠BPC=30°,CP=, ∴∠ABP=30°, ∴T=S扇形ABP+S△PBC=+×1×=+(cm2).
复制答案
考点分析:
相关试题推荐
如图,在半径是2的⊙O中,点Q为优弧MN的中点,圆心角∠MON=60°,在NQ上有一动点P,且点P到弦MN的距离为x.
(1)求弦MN的长;
(2)试求阴影部分面积y与x的函数关系式,并写出自变量x的取值范围;
(3)试分析比较,当自变量x为何值时,阴影部分面积y与S扇形OMN的大小关系.

manfen5.com 满分网 查看答案
某工厂中有若干个形状完全相同的直角三角形铁片余料,(如图),已知∠ACB=90°,AC=3,BC=4,现准备对两块铁片余料进行裁剪,方案如下:
方案一:如图1,裁出一个扇形,圆心为点C,并且与AB相切于点D.
方案二:如图2,裁出一个半圆,圆心O在BC上,并且与AB、AC相切于点D、C;
manfen5.com 满分网
(1)分别计算以上两种方案裁剪下来的图形的面积,并把计算结果直接填在横线上.按照方案一裁出的扇形面积是______;按照方案二裁出的半圆的面积是______
(2)写出按照方案二裁出的半圆面积的计算过程.
查看答案
已知,点P是正方形ABCD内的一点,连PA、PB、PC.
(1)将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图1).
①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积;
②若PA=2,PB=4,∠APB=135°,求PC的长;
(2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上.

manfen5.com 满分网 查看答案
如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为θ,θ与360°-θ之比为黄金比(“黄金比“近似地等于O.618),AB长为30cm,贴纸部分的宽BD为20cm,求贴纸部分的面积(π取3.14,结果精确到O.1cm2).

manfen5.com 满分网 查看答案
正方形OCED与扇形OAB有公共顶点0,分别以OA,0B所在直线为x轴,y轴建立平面直角坐标系.如图所示.正方形两个顶点C、D分别在x轴、y轴正半轴上移动.设OC=x,OA=3
(1)当x=1时,正方形与扇形不重合的面积是______;此时直线CD对应的函数关系式是______
(2)当直线CD与扇形OAB相切时.求直线CD对应的函数关系式;
(3)当正方形有顶点恰好落在manfen5.com 满分网上时,求正方形与扇形不重合的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.