满分5 > 初中数学试题 >

EQ在边长为1的正方形网格中,有形如帆船的图案①和半径为2的⊙P. (1)将图案...

EQ在边长为1的正方形网格中,有形如帆船的图案①和半径为2的⊙P.
(1)将图案①进行平移,使A点平移到点E,画出平移后的图案;
(2)以点M为位似中心,在网格中将图案①放大2倍,画出放大后的图案,并在放大后的图案中标出线段AB的对应线段CD;
(3)在(2)所画的图案中,线段CD被⊙P所截得的弦长为______
(1)根据平移的规律求出各个对应点的坐标或位置作图即可. (2)根据位似中心作图的方法,找到扩大2倍后对应点,顺次连接即可. (3)利用垂径定理和勾股定理即可求解. 【解析】 (1)平移后的图案,如图所示; (2)放大后的图案,如图所示; (3)由垂径定理可知, EF=2EH. ∵PE=2,PH=1, ∴根据勾股定理知EH=, ∴EF=2,即线段CD被⊙P所截得的弦长为.
复制答案
考点分析:
相关试题推荐
如图:⊙O上有A、B、C、D、E五点,且已知AB=BC=CD=DE,AB∥ED.
(1)求∠A、∠E的度数;
(2)连CO交AE于G,交manfen5.com 满分网于H,写出四条与直径CH有关的正确结论.(不必证明)

manfen5.com 满分网 查看答案
已知:如图,在⊙O中,弦AD=BC.求证:AB=CD.

manfen5.com 满分网 查看答案
如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.
(1)P是manfen5.com 满分网上一点(不与C、D重合),求证:∠CPD=∠COB;
(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.

manfen5.com 满分网 查看答案
已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长等于CA的扇形CEF绕点C旋转,且直线CE,CF分别与直线AB交于点M,N.
(Ⅰ)当扇形CEF绕点C在∠ACB的内部旋转时,如图1,求证:MN2=AM2+BN2
(思路点拨:考虑MN2=AM2+BN2符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM沿直线CE对折,得△DCM,连DN,只需证DN=BN,∠MDN=90°就可以了.请你完成证明过程.)
(Ⅱ)当扇形CEF绕点C旋转至图2的位置时,关系式MN2=AM2+BN2是否仍然成立?若成立,请证明;若不成立,请说明理由.
manfen5.com 满分网
查看答案
如图,在⊙O中,D、E分别为半径OA、OB上的点,且AD=BE.点C为弧AB上一点,连接CD、CE、CO,∠AOC=∠BOC.
求证:CD=CE.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.