满分5 > 初中数学试题 >

等腰直角△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=90°,⊙O的半径...

等腰直角△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O与直线AB的距离为5.现△ABC以每秒2个单位的速度向右移动,同时△ABC的边长AB、BC又以每秒0.5个单位沿BA、BC方向增大.
(1)当△ABC的边(BC边除外)与圆第一次相切时,点B移动了多少距离?
(2)若在△ABC移动的同时,⊙O也以每秒1个单位的速度向右移动,则△ABC从开始移动,到它的边与圆最后一次相切,一共经过了多少时间?
(3)在(2)的条件下,是否存在某一时刻,△ABC与⊙O的公共部分等于⊙O的面积?若存在,求出恰好符合条件时两个图形移动了多少时间?若不存在,请说明理由.
manfen5.com 满分网
(1)当△ABC第一次与圆相切时,应是AC与圆相切.如图,△ABC移至△A′B′C′处,A′C′与⊙O切于点E,连OE并延长,交B′C′′于F.设⊙O与直线l切于点D,连OD,则OE⊥A′C′,OD⊥直线l.由切线长定理,以及直角三角形的性质可求得CD的值,进而求得CC′的值,从而求得点C运动的时间,也就有了点运动的时间,点B移动的距离也就可求得了. (2)△ABC与⊙O从开始运动到最后一次相切时,应为AB与圆相切,路程差为6,速度差为1,故从开始运动到最后一次相切的时间为6秒. (3)若圆能在△ABC的内部时,则存在;若圆O不能在三角形的内部,则不存在;即求在(2)条件下,AC与圆的位置关系即可. 【解析】 (1)设第一次相切时,△ABC移至△A′B′C′处,A′C′与⊙O切于点E,连OE并延长, 交B′C′于F. 设⊙O与直线l切于点D,连OD,则OE⊥A′C′,OD⊥直线l. 由切线长定理可知C’E=C′D,设C′D=x,则C′E=x,易知C′F=x. ∴x+x=1, ∴x=-1, ∴CC’=5-1-(-1)=5-. ∴点C运动的时间为(5-)÷(2+0.5)=2-. ∴点B运动的距离为(2-)×2=4-. (2)∵△ABC与⊙O从开始运动到最后一次相切时,是AB与圆相切,且圆在AB的左侧,故路程差为6,速度差为1, ∴从开始运动到最后一次相切的时间为6秒. (3)∵△ABC与⊙O从开始运动到第二次相切时,路程差为4,速度差为1, ∴从开始运动到第二次相切的时间为4秒,此时△ABC移至△A″B″C″处, A″B″=1+4×=3. 连接B”O并延长交A″C″于点P,易证B″P⊥A″C″,且OP=-=<1. ∴此时⊙O与A″C″相交, ∴不存在.
复制答案
考点分析:
相关试题推荐
如图,P为正比例函数y=manfen5.com 满分网x图象上的一个动点,⊙P的半径为3,设点P的坐标为(x,y).
(1)求⊙P与直线x=2相切时点P的坐标.
(2)请直接写出⊙P与直线x=2相交、相离时x的取值范围.

manfen5.com 满分网 查看答案
如图①,AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D.
(1)求证:∠DAC=∠BAC;
(2)若把直线EF向上平行移动,如图②,EF交⊙O于G、C两点,若题中的其它条件不变,这时与∠DAC相等的角是哪一个?为什么?
manfen5.com 满分网
查看答案
如图,AB是⊙O的直径,且AB=10,直线CD交⊙O于C、D两点,交AB于E,OP⊥CD于P,∠PEO=45°,OP=manfen5.com 满分网
(1)求线段CD的长;
(2)试问将直线CD通过怎样的变换才能与⊙O切于B或A.

manfen5.com 满分网 查看答案
如图,AB是⊙O的切线,A为切点,AC是⊙O的弦,过O作OH⊥AC于点H.若OH=2,AB=12,BO=13.
求:(1)⊙O的半径;
(2)sin∠OAC的值;
(3)弦AC的长.(结果保留两个有效数字)

manfen5.com 满分网 查看答案
如图,已知正方形ABCD的边长为4cm,动点P从点B出发,以2cm/s的速度、沿B→C→D方向,向点D运动;动点Q从点A出发,以1cm/s的速度、沿A→B方向,向点B运动.若P、Q两点同时出发,运动时间为t秒.
(1)连接PD、PQ、DQ,设△PQD的面积为S,试求S与t之间的函数关系式;
(2)当点P在BC上运动时,是否存在这样的t,使得△PQD是等腰三角形?若存在,请求出符合条件的t的值;若不存在,请说明理由;
(3)以点P为圆心,作⊙P,使得⊙P与对角线BD相切.问:当点P在CD上运动时,是否存在这样的t,使得⊙P恰好经过正方形ABCD的某一边的中点若存在,请求出符合条件的t的值;若不存在,请说明理由.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.