满分5 > 初中数学试题 >

如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,过点D的...

如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,过点D的切线交BC于E.
(1)求证:DE=manfen5.com 满分网BC;
(2)若tanC=manfen5.com 满分网,DE=2,求AD的长.

manfen5.com 满分网
(1)连接BD,根据直径所对的圆周角是直角,得到直角三角形ABD和BCD,根据切线的判定定理知BC是圆的切线,结合切线长定理得到BE=DE,再根据等边对等角以及等角的余角相等证明DE=CE; (2)在直角三角形ABC中,根据锐角三角函数的概念以及勾股定理计算它的三边.再根据相似三角形的判定和性质进行计算. (1)证明:连接BD, ∵AB是直径,∠ABC=90°, ∴BC是⊙O的切线,∠BDC=90°. ∵DE是⊙O的切线, ∴DE=BE(切线长定理). ∴∠EBD=∠EDB. 又∵∠DCE+∠EBD=∠CDE+∠EDB=90°, ∴∠DCE=∠CDE, ∴DE=CE. 故DE=BC. (2)【解析】 由(1)知,BC=2DE=4. 在Rt△ABC中,AB=BCtanC=4×=2, AC==6. ∵∠ADB=∠ABC=90°,∠A=∠A, ∴△ABD∽△ACB. ∴, ∴=. 解得AD=.
复制答案
考点分析:
相关试题推荐
(1)已知MN是一条直线,AB是⊙O的直径,且AB=2R,设A、B两点到MN的距离分别为x、y.如图(1),当直线MN与⊙O相切时,x、y与O点到直线MN的距离d之间的关系为:______manfen5.com 满分网
(2)如图(2)、图(3),当直线MN与⊙O相离时,x、y与O点到直线MN的距离d之间的关系为:______
(3)根据图(1)、图(2)、图(3),你能归纳出什么结论:______
(4)当直线MN与⊙O相交时,上面归纳的关系是否一定成立?成立时,请写出证明过程,不成立时,说明理由.(请画出图形)
查看答案
在平面直角坐标系中,圆心O的坐标为(-3,4),以半径r在坐标平面内作圆,
(1)当r______时,圆O与坐标轴有1个交点;
(2)当r______时,圆O与坐标轴有2个交点;
(3)当r______时,圆O与坐标轴有3个交点;
(4)当r______时,圆O与坐标轴有4个交点.
查看答案
在同一平面内,已知点O到直线l的距离为5,以点O为圆心,r为半径画圆.探究、归纳:
(1)当r=______时,⊙O上有且只有一个点到直线l的距离等于3;
(2)当r=______时,⊙O上有且只有三个点到直线l的距离等于3;
(3)随着r的变化,⊙O上到直线l的距离等于3的点的个数有哪些变化并求出相对应的r的值或取值范围(不必写出计算过程).
查看答案
如图,正方形ABCD的边长为5cm,动点P从点C出发,沿折线C-B-A-D向终点D运动,速度为acm/s;动点Q从点B出发,沿对角线BD向终点D运动,速度为manfen5.com 满分网cm/s.当其中一点到达自己的终点时,另一点也停止运动.当点P、点Q同时从各自的起点运动时,以PQ为直径的⊙O与直线BD的位置关系也随之变化,设运动时间为t(s).
(1)写出在运动过程中,⊙O与直线BD所有可能的位置关系______
(2)在运动过程中,若a=3,求⊙O与直线BD相切时t的值;
(3)探究:在整个运动过程中,是否存在正整数a,使得⊙O与直线BD相切两次?若存在,请直接写出符合条件的两个正整数a及相应的t的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
有一长方形餐厅,长10米,宽7米,现只摆放两套同样大小的圆桌和椅子,一套圆桌和椅子占据的地面部分看成半径为1.5米的圆形(如图所示).在保证通道最狭窄处的宽度不小于0.5米的前提下,此餐厅内能否摆下三套或四套同样大小的圆桌和椅子呢?请在摆放三套和四套的两种方案中选取一种,在右下方14×20方格网内划出设计示意图.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.