满分5 > 初中数学试题 >

如图,在Rt△ABC中,斜边BC=12,∠C=30°,D为BC的中点,△ABD的...

如图,在Rt△ABC中,斜边BC=12,∠C=30°,D为BC的中点,△ABD的外接圆⊙O与AC交于F点,过A作⊙O的切线AE交DF的延长线于E点.
(1)求证:AE⊥DE;
(2)计算:AC•AF的值.

manfen5.com 满分网
(1)连接OA、OB,证明△ABD为等边三角形后根据三心合一的定理求出∠OAC=60°,求出四边形ABDF内接于圆O,利用切线的性质求出AE⊥DE; (2)由1可得△ABD为等边三角形,易证△ADF∽△ACD,可得AD2=AC•AF. (1)证明:在Rt△ABC中,∠BAC=90°,∠C=30°,D为BC的中点, ∴∠ABD=60°,AD=BD=DC. ∴△ABD为等边三角形.(2分) ∴O点为△ABD的中心(内心,外心,垂心三心合一). 连接OA,OB,∠BAO=∠OAD=30°, ∴∠OAC=60°.(3分) 又∵AE为⊙O的切线, ∴OA⊥AE,∠OAE=90°. ∴∠EAF=30°. ∴AE∥BC.(6分) 又∵四边形ABDF内接于圆O, ∴∠FDC=∠BAC=90°. ∴∠AEF=∠FDC=90°,即AE⊥DE.(8分) (2)【解析】 由(1)知,△ABD为等边三角形, ∴∠ADB=60°. ∴∠ADF=∠C=30°,∠FAD=∠DAC. ∴△ADF∽△ACD,则.(10分) ∴AD2=AC•AF,又AD=BC=6. ∴AC•AF=36.(12分)
复制答案
考点分析:
相关试题推荐
如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,过点D的切线交BC于E.
(1)求证:DE=manfen5.com 满分网BC;
(2)若tanC=manfen5.com 满分网,DE=2,求AD的长.

manfen5.com 满分网 查看答案
(1)已知MN是一条直线,AB是⊙O的直径,且AB=2R,设A、B两点到MN的距离分别为x、y.如图(1),当直线MN与⊙O相切时,x、y与O点到直线MN的距离d之间的关系为:______manfen5.com 满分网
(2)如图(2)、图(3),当直线MN与⊙O相离时,x、y与O点到直线MN的距离d之间的关系为:______
(3)根据图(1)、图(2)、图(3),你能归纳出什么结论:______
(4)当直线MN与⊙O相交时,上面归纳的关系是否一定成立?成立时,请写出证明过程,不成立时,说明理由.(请画出图形)
查看答案
在平面直角坐标系中,圆心O的坐标为(-3,4),以半径r在坐标平面内作圆,
(1)当r______时,圆O与坐标轴有1个交点;
(2)当r______时,圆O与坐标轴有2个交点;
(3)当r______时,圆O与坐标轴有3个交点;
(4)当r______时,圆O与坐标轴有4个交点.
查看答案
在同一平面内,已知点O到直线l的距离为5,以点O为圆心,r为半径画圆.探究、归纳:
(1)当r=______时,⊙O上有且只有一个点到直线l的距离等于3;
(2)当r=______时,⊙O上有且只有三个点到直线l的距离等于3;
(3)随着r的变化,⊙O上到直线l的距离等于3的点的个数有哪些变化并求出相对应的r的值或取值范围(不必写出计算过程).
查看答案
如图,正方形ABCD的边长为5cm,动点P从点C出发,沿折线C-B-A-D向终点D运动,速度为acm/s;动点Q从点B出发,沿对角线BD向终点D运动,速度为manfen5.com 满分网cm/s.当其中一点到达自己的终点时,另一点也停止运动.当点P、点Q同时从各自的起点运动时,以PQ为直径的⊙O与直线BD的位置关系也随之变化,设运动时间为t(s).
(1)写出在运动过程中,⊙O与直线BD所有可能的位置关系______
(2)在运动过程中,若a=3,求⊙O与直线BD相切时t的值;
(3)探究:在整个运动过程中,是否存在正整数a,使得⊙O与直线BD相切两次?若存在,请直接写出符合条件的两个正整数a及相应的t的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.