满分5 > 初中数学试题 >

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过...

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=manfen5.com 满分网,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

manfen5.com 满分网
(1)利用EC为⊙O的切线,ED也为⊙O的切线可求EC=ED,再求得EB=EC,EB=ED可知点E是边BC的中点; (2)解答此题需要运用圆切线和割线的性质和勾股定理求解; (3)判定△ABC是等腰直角三角形时要用到正方形的性质来求得相等的边. (1)证明:连接DO; ∵∠ACB=90°,AC为直径, ∴EC为⊙O的切线; 又∵ED也为⊙O的切线, ∴EC=ED, 又∵∠EDO=90°, ∴∠BDE+∠ADO=90°, ∴∠BDE+∠A=90° 又∵∠B+∠A=90°, ∴∠BDE=∠B, ∴EB=ED, ∴EB=EC,即点E是边BC的中点; (2)【解析】 ∵BC,BA分别是⊙O的切线和割线, ∴BC2=BD•BA, ∴(2EC)2=BD•BA,即BA•2=36, ∴BA=3, 在Rt△ABC中,由勾股定理得 AC===3; (3)【解析】 △ABC是等腰直角三角形. 理由:∵四边形ODEC为正方形, ∴∠DOC=∠ACB=90°,即DO∥BC, 又∵点E是边BC的中点, ∴BC=2OD=AC, ∴△ABC是等腰直角三角形.
复制答案
考点分析:
相关试题推荐
如图①,②,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,B两点,OC为弦,∠AOC=60°,P是x轴上的一动点,连接CP.
(1)求∠OAC的度数;
(2)如图①,当CP与⊙A相切时,求PO的长;
(3)如图②,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问PO为何值时,△OCQ是等腰三角形?

manfen5.com 满分网 查看答案
如图1,AD是圆O的直径,BC切圆O于点D,AB、AC与圆O相交于点E、F.
manfen5.com 满分网
(1)求证:AE•AB=AF•AC;
(2)如果将图1中的直线BC向上平移与圆O相交得图2,或向下平移得图3,此时,AE•AB=AF•AC是否仍成立?若成立,请证明,若不成立,说明理由.
查看答案
如图,点P在⊙O的直径BA的延长线上,AB=2PA,PC切⊙O于点C,连接BC.
(1)求∠P的正弦值;
(2)若⊙O的半径r=2cm,求BC的长度.

manfen5.com 满分网 查看答案
如图,AB是半圆O的直径,过点O作弦AD的垂线交切线AC于点C,OC与半圆O交于点E,连接BE,DE.
(1)求证:∠BED=∠C;
(2)若OA=5,AD=8,求AC的长.

manfen5.com 满分网 查看答案
如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.
(1)求证:AD⊥CD;
(2)若AD=3,AC=manfen5.com 满分网,求AB的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.