满分5 > 初中数学试题 >

如图,⊙O的直径BC=4,过点C作⊙O的切线m,D是直线m上一点,且DC=2,A...

如图,⊙O的直径BC=4,过点C作⊙O的切线m,D是直线m上一点,且DC=2,A是线段BO上一动点,连接AD交⊙O于G,过点A作AD的垂线交直线m于点F,交⊙O于点H,连接GH交BC于E.
(1)当点A是BO的中点时,求AF的长;
(2)若∠AGH=∠AFD,求△AGH的面积.

manfen5.com 满分网
(1)当点A是BO的中点时,根据△ACD∽△FCA,可将AF的长求出; (2)当GH为⊙O的直径时,根据△AGH∽△AFD,可将△AFD的面积求出;当GH不是直径时,可知△AGH为等腰直角三角形,从而可将△AFD的面积求出. 【解析】 (1)∵BC=4,A是OB的中点 ∴AC=3 又∵DC为⊙O的切线 ∴∠ACD=∠ACF=90° ∵AD⊥AF ∴∠ADC、∠CAF都和∠DAC互余 ∴∠ADC=∠CAF ∴△ACD∽△FCA ∴CD:AC=AC:FC 即2:3=3:FC ∴FC= ∴AF===; (2)∵∠AGH=∠AFD,∠DAF=∠HAG, ∴△AGH∽△AFD, ∴∠AGH=∠F=∠CAG,∠AHG=∠D=∠CAF, ∴AE=GE=HE, ①如图1,如果GH是直径(即A与B重合,E与O重合),那么GH=4; 在直角△AFD中,FC=8,FD=10, ∵△AGH∽△AFD, ∴△AGH与△AFD相似比为GH:FD=4:10, ∴这两个相似三角形的面积比为16:100, 而△AFD的面积为20, ∴△AGH的面积=20×16÷100=3.2; ②如图2,如果GH不是直径,由GE=HE, 根据垂径定理的推论可得GH⊥BC, ∴AC垂直平分GH, ∴AG=AH,且GH∥FD, 而∠GAH=90°,则∠AGH=45°. ∴∠D=∠AGH=45°, ∴在直角三角形△ACD中,∠DAC=45°. ∴AC=CD=2 而OC=2, ∴A、O点重合,故AG=AH=2 ∴△AGH的面积=2.
复制答案
考点分析:
相关试题推荐
如图,已知AB是⊙O的直径,AC是弦,CD切⊙O于点C,交AB的延长线于点D,∠ACD=120°,BD=10.
(1)求证:CA=CD;
(2)求⊙O的半径.

manfen5.com 满分网 查看答案
已知:∠MAN=30°,O为边AN上一点,以O为圆心,2为半径作⊙O,交AN于D、E两点,设AD为x.manfen5.com 满分网
(1)如图1,当x为何值时,⊙O与AM相切;
(2)如图2,当x为何值时,⊙O与AM相交于B、C两点,且∠BOC=90度.
查看答案
如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=manfen5.com 满分网,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

manfen5.com 满分网 查看答案
如图①,②,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,B两点,OC为弦,∠AOC=60°,P是x轴上的一动点,连接CP.
(1)求∠OAC的度数;
(2)如图①,当CP与⊙A相切时,求PO的长;
(3)如图②,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问PO为何值时,△OCQ是等腰三角形?

manfen5.com 满分网 查看答案
如图1,AD是圆O的直径,BC切圆O于点D,AB、AC与圆O相交于点E、F.
manfen5.com 满分网
(1)求证:AE•AB=AF•AC;
(2)如果将图1中的直线BC向上平移与圆O相交得图2,或向下平移得图3,此时,AE•AB=AF•AC是否仍成立?若成立,请证明,若不成立,说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.