满分5 > 初中数学试题 >

如图,已知AB是⊙O的直径,PA是⊙O的切线,过点B作BC∥OP交⊙O于点C,连...

如图,已知AB是⊙O的直径,PA是⊙O的切线,过点B作BC∥OP交⊙O于点C,连接AC.
(1)求证:△ABC∽△POA;
(2)若AB=2,PA=manfen5.com 满分网,求BC的长.(结果保留根号)

manfen5.com 满分网
此题首先要掌握圆的性质,直径所对的圆周角是直角;根据切线的性质可得∠PAO=90°,根据平行线的性质,可得∠AOP=∠CBA,所以可证得△ABC∽△POA,根据相似三角形的性质,相似三角形的对应边成比例可求得BC的长. (1)证明:∵AB是⊙O的直径, ∴∠ACB=90°. ∵PA是⊙O的切线, ∴∠OAP=90°. ∵BC∥OP, ∴∠AOP=∠CBA. 则△ABC∽△POA. (2)【解析】 ∵AB是⊙O的直径,且AB=2, ∴OA=1. ∵在Rt△OAP中,PA=, ∴. ∵由(1)可知△ABC∽△POA, ∴. 则BC=. ∴求得BC=.
复制答案
考点分析:
相关试题推荐
如图,⊙O的直径BC=4,过点C作⊙O的切线m,D是直线m上一点,且DC=2,A是线段BO上一动点,连接AD交⊙O于G,过点A作AD的垂线交直线m于点F,交⊙O于点H,连接GH交BC于E.
(1)当点A是BO的中点时,求AF的长;
(2)若∠AGH=∠AFD,求△AGH的面积.

manfen5.com 满分网 查看答案
如图,已知AB是⊙O的直径,AC是弦,CD切⊙O于点C,交AB的延长线于点D,∠ACD=120°,BD=10.
(1)求证:CA=CD;
(2)求⊙O的半径.

manfen5.com 满分网 查看答案
已知:∠MAN=30°,O为边AN上一点,以O为圆心,2为半径作⊙O,交AN于D、E两点,设AD为x.manfen5.com 满分网
(1)如图1,当x为何值时,⊙O与AM相切;
(2)如图2,当x为何值时,⊙O与AM相交于B、C两点,且∠BOC=90度.
查看答案
如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=manfen5.com 满分网,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

manfen5.com 满分网 查看答案
如图①,②,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,B两点,OC为弦,∠AOC=60°,P是x轴上的一动点,连接CP.
(1)求∠OAC的度数;
(2)如图①,当CP与⊙A相切时,求PO的长;
(3)如图②,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问PO为何值时,△OCQ是等腰三角形?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.