满分5 > 初中数学试题 >

如图,AB是⊙O的直径,点M是半径OA的中点,点P在线段AM上运动(不与点M重合...

如图,AB是⊙O的直径,点M是半径OA的中点,点P在线段AM上运动(不与点M重合).点Q在上半圆上运动,且总保持PQ=PO,过点Q作⊙O的切线交BA的延长线于点C.
(1)当∠QPA=90°时,判断△QCP是______三角形;
(2)当∠QPA=60°时,请你对△QCP的形状做出猜想,并给予证明;
(3)由(1)、(2)得出的结论,进一步猜想,当点P在线段AM上运动到任何位置时,△QCP一定是______三角形.

manfen5.com 满分网
(1)当∠QPA=90°时,由于∠QPO=∠QPA=90°,PQ=PO,则△OPQ是等腰直角三角形,∴∠QOA=45°.又由于OQ⊥CQ,所以∠C=45°,即△PQC是等腰直角三角形; (2)由等边对等角和三角形的外角与内角的关系知,∠C=90°-∠QOC=90°-30°=60°,故△QCP是等边三角形; (3)由于一直存在∠PQC=90°-∠OQP,∠C=90°-∠QOC,而∠QOC=∠OQP,∴∠C=∠PQC.故△QCP一定是等腰三角形. 【解析】 (1)等腰直角三角形; (2)当∠QPA=60°,△QCP是等边三角形. 证明:连接OQ. CQ是⊙O的切线, ∴∠OQC=90°. ∵PQ=PO, ∴∠PQO=∠QOP. ∴∠QOP+∠QCO=90°,∠OQP+∠CQP=90°, ∴∠QCO=∠CQP. ∴PQ=PC. 又∠QPA=60°, ∴△QCP是等边三角形; (3)等腰三角形.
复制答案
考点分析:
相关试题推荐
已知:如图,在△ABC中,∠ABC=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,连接DB,DE,OC.
(1)从图中找出一对相似三角形(不添加任何字母和辅助线),并证明你的结论;
(2)若AD=2,AE=1,求CD的长.

manfen5.com 满分网 查看答案
如图,PA为⊙O的切线,A为切点,PO交⊙O于点B,OA=3,OP=6,求∠BAP的度数.

manfen5.com 满分网 查看答案
已知AB是半圆O的直径,点C在BA的延长线上运动(点C与点A不重合),以OC为直径的半圆M与半圆O交于点D,∠DCB的平分线与半圆M交于点E.
manfen5.com 满分网
(1)求证:CD是半圆O的切线(图1);
(2)作EF⊥AB于点F(图2),猜想EF与已有的哪条线段的一半相等,并加以证明;
(3)在上述条件下,过点E作CB的平行线交CD于点N,当NA与半圆O相切时(图3),求∠EOC的正切值.
查看答案
如图,⊙O的直径AB=6cm,D为⊙O上一点,∠BAD=30°,过点D的切线交AB的延长线于点C.求∠ADC的度数及AC的长.

manfen5.com 满分网 查看答案
已知⊙O过点D(4,3),点H与点D关于y轴对称,过H作⊙O的切线交y轴于点A(如图1).
(1)求⊙O半径;
(2)sin∠HAO的值;
(3)如图2,设⊙O与y轴正半轴交点P,点E、F是线段OP上的动点(与P点不重合),连接并延长DE,DF交⊙O于点B,C,直线BC交y轴于点G,若△DEF是以EF为底的等腰三角形,试探索sin∠CGO的大小怎样变化?请说明理由.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.