满分5 > 初中数学试题 >

如图,已知△ABC,AC=BC=6,∠C=90度.O是AB的中点,⊙O与AC相切...

如图,已知△ABC,AC=BC=6,∠C=90度.O是AB的中点,⊙O与AC相切于点D、与BC相切于点E.设⊙O交OB于F,连DF并延长交CB的延长线于G.
(1)∠BFG与∠BGF是否相等?为什么?
(2)求由DG、GE和弧ED所围成图形的面积.(阴影部分)

manfen5.com 满分网
(1)连接OD.根据切线的性质得到OD⊥AC,则OD∥BC;可得∠ODF=∠G,再结合对顶角相等和等边对等角得到∠BFG=∠BGF. (2)阴影部分的面积=直角三角形CDG的面积-(正方形的面积-扇形ODE的面积).根据等腰直角三角形的性质可求出有关边AB、OD的长,以及圆心角∠DOE的度数.进而可根据扇形的面积和直角三角形的面积求得阴影部分的面积. 【解析】 (1)∠BFG=∠BGF;理由如下: 连OD, ∵OD=OF(⊙O的半径), ∴∠ODF=∠OFD; ∵⊙O与AC相切于点D,∴OD⊥AC; 又∵∠C=90°,即GC⊥AC,∴OD∥GC, ∴∠BGF=∠ODF; 又∵∠BFG=∠OFD, ∴∠BFG=∠BGF. (2)连OE, ∵⊙O与AC相切于点D、与BC相切于点E, ∴DC=CE,OD⊥AC,OE⊥BC, ∵∠C=90°, ∴四边形ODCE为正方形, ∵AO=BO=AB==3, ∴OD=BC=×6=3, ∵∠BFG=∠BGF, ∴BG=BF=OB-OF=3-3; 从而CG=CB+BG=3+3; ∴S阴影=S△DCG-S正方形ODCE+S扇形ODE =S△DCG-(S正方形ODCE-S扇形ODE) =•3•(3+3)-(32-π•32) =.
复制答案
考点分析:
相关试题推荐
如图,从一个直径是2的圆形铁皮中剪下一个圆心角为90°的扇形
(1)求这个扇形的面积(结果保留π)
(2)在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面与此扇形围成一个圆锥?请说明理由
(3)当⊙O的半径R(R>0)为任意值时,(2)中的结论是否仍然成立?请说明理由.

manfen5.com 满分网 查看答案
如图,已知点A,B,C,D均在已知圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10cm.
(1)求此圆的半径;
(2)求图中阴影部分的面积(其中л≈3,manfen5.com 满分网≈1.7).

manfen5.com 满分网 查看答案
如图,AB为⊙O的直径,CD⊥AB于点E,交⊙O于点D,OF⊥AC于点F.
(1)请写出三条与BC有关的正确结论;
(2)当∠D=30°,BC=1时,求圆中阴影部分的面积.

manfen5.com 满分网 查看答案
如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABO的三个顶点A,B,O都在格点上.
(1)画出△ABO绕点O逆时针旋转90°后得到的三角形;
(2)求△ABO在上述旋转过程中所扫过的面积.

manfen5.com 满分网 查看答案
如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,连接AC,BD.
(1)求证:AC=BD;
(2)若图中阴影部分的面积是manfen5.com 满分网πcm2,OA=2cm,求OC的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.