满分5 > 初中数学试题 >

如图所示,⊙O是△ABC的内切圆,D,E,F为切点,AB=18cm,BC=20c...

如图所示,⊙O是△ABC的内切圆,D,E,F为切点,AB=18cm,BC=20cm,AC=12cm,则△BMN的周长为( )
manfen5.com 满分网
A.20cm
B.22cm
C.24cm
D.26cm
可根据切线长定理,将△BMN的周长转化为切线BF、BD的长,由此得解. 【解析】 ∵⊙O是△ABC的内切圆,且与MN相切于点G; 根据切线长定理,得: BF=BD,AF=AE,CD=CE,MF=MG,NG=ND; ∴BF=BD==13cm; ∵C△BMN=BM+BN+MN=BM+BN+MG+GN=BM+MF+BN+ND=BF+BD; ∴C△BMN=2BF=26cm. 故选D.
复制答案
考点分析:
相关试题推荐
如图,等边三角形ABC中,AD⊥BC于D,△ABD的内切⊙O的半径为R,另有一个⊙O1与AB,BD,⊙O都相切,其半径为r1,则⊙O与⊙O1的面积之比为( )
manfen5.com 满分网
A.1:9
B.9:1
C.8:1
D.与R,r1的取值有关
查看答案
⊙O是△ABC的内切圆,且∠C=90°,切点为D,E,F,若AF,BE的长是方程x2-13x+30=0的两个根,则S△ABC的值为( )
A.30
B.15
C.60
D.13
查看答案
如图,△ABC中,∠C=90°,BC=4,AC=3,⊙O内切于△ABC,则阴影部分面积为( )
manfen5.com 满分网
A.12-π
B.12-2π
C.14-4π
D.6-π
查看答案
三角形内切圆的圆心是( )
A.三内角平分线的交点
B.三边中垂线的交点
C.三中线的交点
D.三高线的交点
查看答案
如图,某石油公司计划在三条公路围成的一块平地上建一个加油站,综合各种因素,要求这个加油站到三条公路的距离相等,则应建在( )
manfen5.com 满分网
A.△ABC的三条内角平分线的交点处
B.△ABC的三条高线的交点处
C.△ABC三边的中垂线的交点处
D.△ABC的三条中线的交点处
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.