满分5 > 初中数学试题 >

设a,b是一个直角三角形两条直角边的长,且(a2+b2)(a2+b2+1)=12...

设a,b是一个直角三角形两条直角边的长,且(a2+b2)(a2+b2+1)=12,则这个直角三角形的斜边长为   
根据勾股定理c2=a2+b2代入方程求解即可. 【解析】 ∵a,b是一个直角三角形两条直角边的长 设斜边为c, ∴(a2+b2)(a2+b2+1)=12,根据勾股定理得:c2(c2+1)-12=0 即(c2-3)(c2+4)=0, ∵c2+4≠0, ∴c2-3=0, 解得c=或c=-(舍去). 则直角三角形的斜边长为. 故答案为:
复制答案
考点分析:
相关试题推荐
一个六边形的六个内角都是120度,连续四边的长为1,3,4,2,则该六边形的周长是    查看答案
如图,△ABC、△DCE、△GEF都是正三角形,且B、C、E、F在同一直线上,A、D、G也在同一直线上,设△ABC、△DCE、△GEF的面积分别为S1、S2、S3.当S1=4,S2=6时,S3=   
manfen5.com 满分网 查看答案
如图,直线l是矩形ABCD的一条对称轴,点P是直线l上一点,且使得△PAB和△PBC均为等腰三角形,则满足条件的点P共有    个.
manfen5.com 满分网 查看答案
如图,在△ABC中,AB=AC=manfen5.com 满分网,BC=2,在BC上有50个不同的点P1,P2,…,P50,过这50个点分别作△ABC的内接矩形P1E1F1G1,P2E2F2G2,…,P50E50F50G50,每个内接矩形的周长分别为L1,L2,…,L50,则L1+L2+…+L50=   
manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,已知点A(1,0)和点B(0,manfen5.com 满分网),点C在坐标平面内.若以A,B,C为顶点构成的三角形是等腰三角形,且底角为30°,则满足条件的点C有    个.
manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.