(1)根据AD∥OC可得∠A=∠COB,从而判定=;
(2)连接OD,只要证明∠CDO=90°即可;
(3)在△ADG中用勾股定理求解.
(1)证明:连接OD;
∵AD∥OC,
∴∠A=∠COB;(1分)
∵∠A=∠BOD,
∴∠BOC=∠BOD;
∴∠DOC=∠BOC;
∴,
则点E是的中点;(2分)
(2)证明:如图所示:
由(1)知∠DOE=∠BOE,(1分)
∵CO=CO,OD=OB,
∴△COD≌△COB;(2分)
∴∠CDO=∠B;
又∵BC⊥AB,
∴∠CDO=∠B=90°;
∴CD是⊙O的切线;(3分)
(3)【解析】
在△ADG中,∵sinA=,
设DG=4x,AD=5x;
∵DF⊥AB,
∴AG=3x;(1分)
又∵⊙O的半径为5,
∴OG=5-3x;
∵OD2=DG2+OG2,
∴52=(4x)2+(5-3x)2;(2分)
∴x1=,x2=0;(舍去)
∴DF=2DG=2×4x=8x=8×(3分).