满分5 > 初中数学试题 >

如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点...

如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.
(1)连接PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;
(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.

manfen5.com 满分网
(1)通过一次函数可求出A、B两点的坐标及线段的长,再在Rt△AOP利用勾股定理可求得当PB=PA时k的值,再与圆的半径相比较,即可得出⊙P与x轴的位置关系. (2)根据正三角形的性质,分两种情况讨论, ①当圆心P在线段OB上时,②当圆心P在线段OB的延长线上时,从而求得k的值. 【解析】 (1)⊙P与x轴相切,(1分) ∵直线y=-2x-8与x轴交于A(-4,0),与y轴交于B(0,-8), ∴OA=4,OB=8. 由题意,OP=-k, ∴PB=PA=8+k. ∵在Rt△AOP中,k2+42=(8+k)2 ∴k=-3,(2分) ∴OP等于⊙P的半径. ∴⊙P与x轴相切.(1分) (2)设⊙P1与直线l交于C,D两点,连接P1C,P1D, 当圆心P1在线段OB上时,作P1E⊥CD于E, ∵△P1CD为正三角形, ∴DE=CD=,P1D=3. ∴P1E=. ∵∠AOB=∠P1EB=90°,∠ABO=∠P1BE, ∴△AOB∽△P1EB. ∴,即, ∴.(2分) ∴P1O=BO-BP1=8-. ∴P1(0,-8). ∴k=-8.(2分) 当圆心P2在线段OB延长线上时,同理可得P2(0,--8). ∴k=--8.(2分) ∴当k=-8或k=--8时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.
复制答案
考点分析:
相关试题推荐
要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化.
(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的manfen5.com 满分网,求P、Q两块绿地周围的硬化路面的宽.
(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC,弦DF⊥AB于点G.
(1)求证:点E是manfen5.com 满分网的中点;
(2)求证:CD是⊙O的切线;
(3)若sin∠BAD=manfen5.com 满分网,⊙O的半径为5,求DF的长.

manfen5.com 满分网 查看答案
关于x的方程manfen5.com 满分网有两个不相等的实数根.
(1)求实数k的取值范围;
(2)是否存在实数k,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出k的值;若不存在,说明理由.
查看答案
已知manfen5.com 满分网manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
解方程:
(1)(x-3)2+2x(x-3)=0;(2)x2-3x-1=0.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.