满分5 > 初中数学试题 >

如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴...

如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N.
(1)求直线DE的解析式和点M的坐标;
(2)若反比例函数manfen5.com 满分网(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;
(3)若反比例函数manfen5.com 满分网(x>0)的图象与△MNB有公共点,请直接写出m的取值范围.

manfen5.com 满分网
(1)设直线DE的解析式为y=kx+b,直接把点D,E代入解析式利用待定系数法即可求得直线DE的解析式,先根据矩形的性质求得点M的纵坐标,再代入一次函数解析式求得其横坐标即可; (2)利用点M求得反比例函数的解析式,根据一次函数求得点N的坐标,再代入反比例函数的解析式判断是否成立即可; (3)满足条件的最内的双曲线的m=4,最外的双曲线的m=8,所以可得其取值范围. 【解析】 (1)设直线DE的解析式为y=kx+b, ∵点D,E的坐标为(0,3)、(6,0), ∴, 解得k=-,b=3; ∴; ∵点M在AB边上,B(4,2),而四边形OABC是矩形, ∴点M的纵坐标为2; 又∵点M在直线上, ∴2=; ∴x=2; ∴M(2,2); (2)∵(x>0)经过点M(2,2), ∴m=4; ∴; 又∵点N在BC边上,B(4,2), ∴点N的横坐标为4; ∵点N在直线上, ∴y=1; ∴N(4,1); ∵当x=4时,y==1, ∴点N在函数的图象上; (3)当反比例函数(x>0)的图象通过点M(2,2),N(4,1)时m的值最小,当反比例函数(x>0)的图象通过点B(4,2)时m的值最大, ∴2=,有m的值最小为4, 2=,有m的值最大为8, ∴4≤m≤8.
复制答案
考点分析:
相关试题推荐
我市某商场为做好“家电下乡”的惠民服务,决定从厂家购进甲、乙、丙三种不同型号的电视机108台,其中甲种电视机的台数是丙种的4倍,购进三种电视机的总金额不超过147000元,已知甲、乙、丙三种型号的电视机的出厂价格分别为1000元/台,1500元/台,2000元/台.
(1)求该商场至少购买丙种电视机多少台?
(2)若要求甲种电视机的台数不超过乙种电视的台数,问有哪些购买方案?
查看答案
如图,方格中有一个△ABC,请你在方格内,画出满足条件A1B1=AB,B1C1=BC,∠A1=∠A的△A1B1C1,并判断△A1B1C1与△ABC是否一定全等.
manfen5.com 满分网
查看答案
王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=-manfen5.com 满分网x2+manfen5.com 满分网x,其中y(m)是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.
(1)请写出抛物线的开口方向,顶点坐标,对称轴.
(2)请求出球飞行的最大水平距离.
(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.

manfen5.com 满分网 查看答案
如图,把一张长12cm,宽10cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).
(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?
(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.
manfen5.com 满分网
查看答案
给出下列命题:
命题1:点(1,1)是直线y=x与双曲线y=manfen5.com 满分网的一个交点;
命题2:点(2,4)是直线y=2x与双曲线y=manfen5.com 满分网的一个交点;
命题3:点(3,9)是直线y=3x与双曲线y=manfen5.com 满分网的一个交点;
(1)请观察上面命题,猜想出命题n(n是正整数);
(2)证明你猜想的命题n是正确.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.