如图①,②,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,B两点,OC为弦,∠AOC=60°,P是x轴上的一动点,连接CP.
(1)求∠OAC的度数;
(2)如图①,当CP与⊙A相切时,求PO的长;
(3)如图②,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问PO为何值时,△OCQ是等腰三角形?
考点分析:
相关试题推荐
我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.
(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;
(2)如图,在△ABC中,点D,E分别在AB,AC上,设CD,BE相交于点O,
若∠A=60°,∠DCB=∠EBC=
∠A.请你写出图中一个与∠A相等的角,并猜想图中哪个四边形是等对边四边形;
(3)在△ABC中,如果∠A是不等于60°的锐角,点D,E分别在AB,AC上,且∠DCB=∠EBC=
∠A.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.
查看答案
光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:
| 每台甲型收割机的租金 | 每台乙型收割机的租金 |
A地区 | 1800 | 1600 |
B地区 | 1600 | 1200 |
(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;
(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;
(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.
查看答案
如图①,直线AM⊥AN,⊙O分别与AM、AN相切于B、C两点,连接OC、BC,则有∠ACB=∠OCB;(请思考:为什么)若将图①中直线AN向右平移,与⊙O相交于C
1、C
2两点,⊙O与AM的切点仍记为B,如图②.
(1)请你写出与平移前相应的结论,并将图②补充完整;
(2)判断此结论是否成立,并说明理由.
查看答案
某农机公司为更好地服务于麦收工作,按图1给出的比例,从甲、乙、丙三个工厂共购买了150
台同种农机,公司技术人员对购买的这批农机全部进行了检验,绘制了如图2所示的统计图.
请你根据图中提供的信息,解答以下问题:
(1)求该农机公司从丙厂购买农机的台数;
(2)求该农机公司购买的150台农机中优等品的台数;
(3)如果购买的这批产品质量能代表各厂的产品质量状况,那么:
①从优等品的角度考虑,哪个工厂的产品质量较好些?为什么?
②甲厂2005年生产的360台产品中的优等品有多少台?
查看答案
如图①是一个美丽的风车图案,你知道它是怎样画出来的吗?按下列步骤可画出这个风车图案:在图②中,先画线段OA,将线段OA平移至CB处,得到风车的第一个叶片F
1,然后将第一个叶片OABC绕点O逆时针旋转180°得到第二个叶片F
2,再将F
1、F
2同时绕点O逆时针旋转90°得到第三、第四个叶片F
3、F
4.根据以上过程,解答下列问题:
(1)若点A的坐标为(4,0),点C的坐标为(2,1),写出此时点B的坐标;
(2)请你在图②中画出第二个叶片F
2;
(3)在(1)的条件下,连接OB,由第一个叶片逆时针旋转180°得到第二个叶片的过程中,线段OB扫过的图形面积是多少?
查看答案