满分5 > 初中数学试题 >

已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且B...

已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.
(1)求证:BF=AC;
(2)求证:CE=manfen5.com 满分网BF;
(3)CE与BG的大小关系如何?试证明你的结论.

manfen5.com 满分网
(1)利用ASA判定Rt△DFB≌Rt△DAC,从而得出BF=AC. (2)利用ASA判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,又因为BF=AC所以CE=AC=BF (3)利用等腰三角形“三线合一”)和勾股定理即可求解. (1)证明:∵CD⊥AB,∠ABC=45°, ∴△BCD是等腰直角三角形. ∴BD=CD. ∵∠DBF=90°-∠BFD,∠DCA=90°-∠EFC,且∠BFD=∠EFC, ∴∠DBF=∠DCA. 在Rt△DFB和Rt△DAC中, ∵ ∴Rt△DFB≌Rt△DAC(ASA). ∴BF=AC; (2)证明:∵BE平分∠ABC, ∴∠ABE=∠CBE. 在Rt△BEA和Rt△BEC中 , ∴Rt△BEA≌Rt△BEC(ASA). ∴CE=AE=AC. 又由(1),知BF=AC, ∴CE=AC=BF; (3)证明:∠ABC=45°,CD垂直AB于D,则CD=BD. H为BC中点,则DH⊥BC(等腰三角形“三线合一”) 连接CG,则BG=CG,∠GCB=∠GBC=∠ABC=×45°=22.5°,∠EGC=45°. 又∵BE垂直AC,故∠EGC=∠ECG=45°,CE=GE. ∵△GEC是直角三角形, ∴CE2+GE2=CG2, ∵DH垂直平分BC, ∴BG=CG, ∴CE2+GE2=CG2=BG2;即2CE2=BG2,BG=CE, ∴BG>CE.
复制答案
考点分析:
相关试题推荐
已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.
求证:(1)△BFC≌△DFC;
(2)AD=DE.

manfen5.com 满分网 查看答案
已知:关于x的方程x2-kx-2=0.
(1)求证:方程有两个不相等的实数根;
(2)设方程的两根为x1,x2,如果2(x1+x2)>x1x2,求k的取值范围.
查看答案
已知方程5x2+kx-10=0的一个根是-5,求它的另一个根及k的值.
查看答案
解方程:①2x2+5x-1=0       ②x2+4x-5=0
查看答案
如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是    .(将你认为正确的结论的序号都填上)
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.