满分5 > 初中数学试题 >

已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分...

已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:
(1)当t为何值时,△PBQ是直角三角形?
(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由;
(3)设PQ的长为x(cm),试确定y与x之间的关系式.

manfen5.com 满分网
(1)本题要分情况进行讨论:①∠BPQ=90°;②∠BQP=90°.然后在直角三角形BQP中根据BP,BQ的表达式和∠B的度数进行求解即可. (2)本题可先用△ABC的面积-△PBQ的面积表示出四边形APQC的面积,即可得出y,t的函数关系式,然后另y等于三角形ABC面积的三分之二,可得出一个关于t的方程,如果方程无解则说明不存在这样的t值,如果方程有解,那么求出的t值就是题目所求的值. (3)可过P作PM⊥BC于M,先在直角三角形PQM中,用t表示出x,然后将x替换掉(2)中得出的y,t的函数关系式中t的值,即可得出y,x的函数关系式. 【解析】 (1)根据题意得AP=tcm,BQ=tcm, △ABC中,AB=BC=3cm,∠B=60°, ∴BP=(3-t)cm, △PBQ中,BP=3-t,BQ=t,若△PBQ是直角三角形,则 ∠BQP=90°或∠BPQ=90°, 当∠BQP=90°时,BQ=BP, 即t=(3-t),t=1(秒), 当∠BPQ=90°时,BP=BQ, 3-t=t,t=2(秒), 答:当t=1秒或t=2秒时,△PBQ是直角三角形. (2)过P作PM⊥BC于M, △BPM中,sin∠B=, ∴PM=PB•sin∠B=(3-t), ∴S△PBQ=BQ•PM=•t•(3-t), ∴y=S△ABC-S△PBQ, =×32×-•t•(3-t), =t2-t+, ∴y与t的关系式为y=t2-t+, 假设存在某一时刻t,使得四边形APQC的面积是△ABC面积的, 则S四边形APQC=S△ABC, ∴t2-t+=××32×, ∴t2-3t+3=0, ∵(-3)2-4×1×3<0, ∴方程无解, ∴无论t取何值,四边形APQC的面积都不可能是△ABC面积的. (3)在Rt△PQM中,∵MQ=|BM-BQ|=|(1-t)|, MQ2+PM2=PQ2, ∴x2=[(1-t)]2+[(3-t)]2, =(t2-2t+1)+(9-6t+t2), =(4t2-12t+12)=3t2-9t+9, ∴t2-3t=(x2-9), ∵y=t2-t+, ∴y=t2-t+=×(x2-9)+=x2+, ∴y与x的关系式为y=x2+.
复制答案
考点分析:
相关试题推荐
随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆.
(1)若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?
(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.
查看答案
若关于x的一元二次方程x2-2(2-k)x+k2+12=0有实数根α、β.
(1)求实数k的取值范围;
(2)设manfen5.com 满分网,求t的最小值.
查看答案
已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.
(1)求证:BF=AC;
(2)求证:CE=manfen5.com 满分网BF;
(3)CE与BG的大小关系如何?试证明你的结论.

manfen5.com 满分网 查看答案
已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.
求证:(1)△BFC≌△DFC;
(2)AD=DE.

manfen5.com 满分网 查看答案
已知:关于x的方程x2-kx-2=0.
(1)求证:方程有两个不相等的实数根;
(2)设方程的两根为x1,x2,如果2(x1+x2)>x1x2,求k的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.