如图,对称轴为直线x=
的抛物线经过点A(6,0)和B(0,4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?
②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
已知,如图,AB是⊙O的直径,C是⊙O上一点,连接AC,过点C作直线CD⊥AB于D(AD<DB),点E是DB上任意一点(点D、B除外),直线CE交⊙O于点F,连接AF与直线CD交于点G.
(1)求证:AC
2=AG•AF;
(2)若点E是AD(点A除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.
查看答案
如图所示,A、B两城市相距100km,现计划在这两座城市间修建一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:
≈1.732,
≈1.414)
查看答案
已知:如图,A是以EF为直径的半圆上的一点,作AG⊥EF交EF于G,又B为AG上一点,EB的延长线交半圆于点K,
(1)求证:AE
2=EB•EK;
(2)若A是弧Ek的中点,求证:EB=AB;
(3)若EG=2,GF=6,GB=
,求BK的值.
查看答案
已知:直线y=kx(k≠0)经过点(3,-4).
(1)求k的值;
(2)将该直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相离(点O为坐标原点),试求m的取值范围.
查看答案
如图,在菱形ABCD中,AE⊥BC,E为垂足,cosB=
,EC=2,
(1)求菱形ABCD的边长.
(2)若P是AB边上的一个动点,则线段EP的长度的最小值是多少?
查看答案