满分5 > 初中数学试题 >

抛物线y=-2x2+8x-6. (1)用配方法求顶点坐标,对称轴; (2)x取何...

抛物线y=-2x2+8x-6.
(1)用配方法求顶点坐标,对称轴;
(2)x取何值时,y随x的增大而减小?
(3)x取何值时,y=0;x取何值时,y>0;x取何值时,y<0.
(1)根据配方法的步骤要求,将抛物线解析式的一般式转化为顶点式,可确定顶点坐标和对称轴; (2)由对称轴x=-2,抛物线开口向下,结合图象,可确定函数的增减性; (3)判断函数值的符号,可以令y=0,解一元二次方程求x,再根据抛物线的开口方向,确定函数值的符号与x的取值范围的对应关系. 【解析】 (1)∵y=-2x2+8x-6=-2(x-2)2+2, ∴顶点坐标为(2,2),对称轴为直线x=2; (2)∵a=-2<0,抛物线开口向下,对称轴为直线x=2, ∴当x>2时,y随x的增大而减小; (3)令y=0,即-2x2+8x-6=0,解得x=1或3,抛物线开口向下, ∴当x=1或x=3时,y=0; 当1<x<3时,y>0; 当x<1或x>3时,y<0.
复制答案
考点分析:
相关试题推荐
已知y=y1+y2,y1与x成正比例,y2与x-2成反比例,且当x=1时,y=-1;当x=3时,y=5.求y与x的函数关系式.
查看答案
如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜边上的中点.
如图②,若整个△EFG从图①的位置出发,以1cm/s的速度沿射线AB方向平移,在△EFG平移的同时,点P从△EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况).
manfen5.com 满分网
(1)当x为何值时,OP∥AC;
(2)求y与x之间的函数关系式,并确定自变量x的取值范围;
(3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13:24?若存在,求出x的值;若不存在,说明理由.(参考数据:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)
查看答案
如图一次函数y=kx+b的图象与反比例函数manfen5.com 满分网的图象相交于A、B两点.
(1)利用图中的条件,求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数值大于反比例函数值时,x的取值范围;
(3)根据图象写出使反比例函数值大于一次函数值时,x的取值范围;
(4)求△AOB的面积.

manfen5.com 满分网 查看答案
一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系:
(1)求抛物线的解析式;
(2)一辆货车高4m,宽2m,能否从该隧道内通过,为什么?
(3)如果隧道内设双行道,那么这辆货车是否可以顺利通过,为什么?

manfen5.com 满分网 查看答案
把抛物线y=ax2+bx+c先向右平移2个单位,再向下平移5个单位得到抛物线y=x2-2x-2,那么a=   
b=    ,c=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.