满分5 > 初中数学试题 >

如图,平行四边形ABCD中,AB⊥AC,AB=1,BC=.对角线AC,BD相交于...

如图,平行四边形ABCD中,AB⊥AC,AB=1,BC=manfen5.com 满分网.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.
(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;
(2)试说明在旋转过程中,线段AF与EC总保持相等;
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.

manfen5.com 满分网
(1)当旋转角为90°时,∠AOF=90°,由AB⊥AC,可得AB∥EF,即可证明四边形ABEF为平行四边形; (2)证明△AOF≌△COE即可; (3)EF⊥BD时,四边形BEDF为菱形,可根据勾股定理求得AC=2,∴OA=1=AB,又AB⊥AC,∴∠AOB=45°. (1)证明:当∠AOF=90°时,AB∥EF, 又∵AF∥BE, ∴四边形ABEF为平行四边形.(3分) (2)证明:∵四边形ABCD为平行四边形, 在△AOF和△COE中 ∵. ∴△AOF≌△COE(ASA). ∴AF=EC. (4分) (3)【解析】 四边形BEDF可以是菱形.(5分) 理由:如图,连接BF,DE 由(2)知△AOF≌△COE,得OE=OF, ∴EF与BD互相平分. ∴当EF⊥BD时,四边形BEDF为菱形.(6分) 在Rt△ABC中,AC===2, ∴OA=1=AB, 又∵AB⊥AC, ∴∠AOB=45°,(7分) ∴∠AOF=45°, ∴AC绕点O顺时针旋转45°时,四边形BEDF为菱形.(9分)
复制答案
考点分析:
相关试题推荐
学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为1.6m的小明(AB)的影子BC长是3m,而小颖(EH)刚好在路灯灯泡的正下方H点,并测得HB=6m.
(1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G;
(2)求路灯灯泡的垂直高度GH;
(3)如果小明沿线段BH向小颖(点H)走去,当小明走到BH中点B1处时,求其影子B1C1的长;当小明继续走剩下路程的manfen5.com 满分网到B2处时,求其影子B2C2的长;当小明继续走剩下路程的manfen5.com 满分网到B3处,…按此规律继续走下去,当小明走剩下路程的manfen5.com 满分网到Bn处时,其影子BnCn的长为______m.(直接用n的代数式表示)

manfen5.com 满分网 查看答案
A箱中装有3张相同的卡片,它们分别写有数字1,2,4;B箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从A箱、B箱中各随机地取出1张卡片,请你用画树形(状)图或列表的方法求:
(1)两张卡片上的数字恰好相同的概率;
(2)如果取出A箱中卡片上的数字作为十位上的数字,取出B箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率.
查看答案
如图,△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线于E,EF⊥AB,交AB于F,EG⊥AC,交AC的延长线于G,试问:BF与CG的大小如何?证明你的结论.

manfen5.com 满分网 查看答案
汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,每年盈利的年增长率相同.
(1)该公司2006年盈利多少万元?
(2)若该公司盈利的年增长率继续保持不变,预计2008年盈利多少万元?
查看答案
请在6×6的正方形网格中,各画出一个不同类型的特殊平行四边形,并分别求出所画特殊平行四边形的面积.
(1)图1:AB为特殊平行四边形的一条边;
(2)图2:AB为特殊平行四边形的一条对角线.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.