如图,已知二次函数y=ax
2-4x+c的图象经过点A和点B.
(1)求该二次函数的表达式;
(2)写出该抛物线的对称轴及顶点坐标;
(3)点P(m,m)与点Q均在该函数图象上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q到x轴的距离.
考点分析:
相关试题推荐
在我市迎接奥运圣火的活动中,某校教学楼上悬挂着宣传条幅DC,小丽同学在点A处,测得条幅顶端D的仰角为30°,再向条幅方向前进10米后,又在点B处测得条幅顶端D的仰角为45°,已知测点A、B和C离地面高度都为1.44米,求条幅顶端D点距离地面的高度.(计算结果精确到0.1米,参考数据:
≈1.414,
≈1.732.)
查看答案
如图所示,小华设计了一个探究杠杆平衡条件的实验:在一根匀质的木杆中点O左侧固定位置B处悬挂重物A,在中点O右侧用一个弹簧秤向下拉,改变弹簧秤与点O的距离x(cm),观察弹簧秤的示数y(N)的变化情况.实验数据记录如下:
x(cm)…10 | 15 | 20 | 25 30… |
y(N)…30 | 20 | 15 | 12 10… |
(1)把上表中x,y的各组对应值作为点的坐标,在坐标系中描出相应的点,用平滑曲线连接这些点并观察所得的图象,猜测y(N)与x(cm)之间的函数关系,并求出函数关系式;
(2)当弹簧秤的示数为24N时,弹簧秤与O点的距离是多少cm?随着弹簧秤与O点的距离不断减小,弹簧秤上的示数将发生怎样的变化?
查看答案
为了做好防控H1N1甲型流感工作,我县卫生局准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士指导某乡镇预防H1N1甲型流感工作.
(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果.
(2)求恰好选中医生甲和护士A的概率.
查看答案
已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GCF.求证:BE=DG.
查看答案
(1)一木杆按如图1所示的方式直立在地面上,请在图中画出它在阳光下的影子;(用线段CD表示)
(2)图2是两根标杆及它们在灯光下的影子.请在图中画出光源的位置(用点P表示);并在图中画出人在此光源下的影子.(用线段EF表示)
查看答案