满分5 > 初中数学试题 >

如图,抛物线y=-x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y...

如图,抛物线y=-x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.
(1)直接写出A、B、C三点的坐标和抛物线的对称轴;
(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m;
①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?
②设△BCF的面积为S,求S与m的函数关系式.

manfen5.com 满分网
(1)已知了抛物线的解析式,当y=0时可求出A,B两点的坐标,当x=0时,可求出C点的坐标.根据对称轴x=-可得出对称轴的解析式. (2)PF的长就是当x=m时,抛物线的值与直线BC所在一次函数的值的差.可先根据B,C的坐标求出BC所在直线的解析式,然后将m分别代入直线BC和抛物线的解析式中,求得出两函数的值的差就是PF的长. 根据直线BC的解析式,可得出E点的坐标,根据抛物线的解析式可求出D点的坐标,然后根据坐标系中两点的距离公式,可求出DE的长,然后让PF=DE,即可求出此时m的值. (3)可将三角形BCF分成两部分来求: 一部分是三角形PFC,以PF为底边,以P的横坐标为高即可得出三角形PFC的面积. 一部分是三角形PFB,以PF为底边,以P、B两点的横坐标差的绝对值为高,即可求出三角形PFB的面积. 然后根据三角形BCF的面积=三角形PFC的面积+三角形PFB的面积,可求出关于S、m的函数关系式. 【解析】 (1)A(-1,0),B(3,0),C(0,3). 抛物线的对称轴是:直线x=1. (2)①设直线BC的函数关系式为:y=kx+b. 把B(3,0),C(0,3)分别代入得: 解得:k=-1,b=3. 所以直线BC的函数关系式为:y=-x+3. 当x=1时,y=-1+3=2, ∴E(1,2). 当x=m时,y=-m+3, ∴P(m,-m+3). 在y=-x2+2x+3中,当x=1时,y=4. ∴D(1,4) 当x=m时,y=-m2+2m+3, ∴F(m,-m2+2m+3) ∴线段DE=4-2=2, 线段PF=-m2+2m+3-(-m+3)=-m2+3m ∵PF∥DE, ∴当PF=ED时,四边形PEDF为平行四边形. 由-m2+3m=2,解得:m1=2,m2=1(不合题意,舍去). 因此,当m=2时,四边形PEDF为平行四边形. ②设直线PF与x轴交于点M,由B(3,0),O(0,0),可得:OB=OM+MB=3. ∵S=S△BPF+S△CPF 即S=PF•BM+PF•OM=PF•(BM+OM)=PF•OB. ∴S=×3(-m2+3m)=-m2+m(0≤m≤3).
复制答案
考点分析:
相关试题推荐
为把产品打入国际市场,某企业决定从下面两个投资方案中选择一个进行投资生产.方案一:生产甲产品,每件产品成本为a万美元(a为常数,且3<a<8),每件产品销售价为10万美元,每年最多可生产200件;方案二:生产乙产品,每件产品成本为8万美元,每件产品销售价为18万美元,每年最多可生产120件.另外,年销售x件乙产品时需上交0.05x2万美元的特别关税.在不考虑其它因素的情况下:
(1)分别写出该企业两个投资方案的年利润y1、y2与相应生产件数x(x为正整数)之间的函数关系式,并指出自变量的取值范围;
(2)分别求出这两个投资方案的最大年利润;
(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?
查看答案
如图,在边长为2的圆内接正方形ABCD中,AC是对角线,P为边CD的中点,延长AP交圆于点E.
(1)∠E=______度;
(2)写出图中现有的一对不全等的相似三角形,并说明理由;
(3)求弦DE的长.

manfen5.com 满分网 查看答案
已知二次函数y=ax2-4x+3的图象经过点(-1,8).
(1)求此二次函数的解析式;
(2)根据(1)填写下表.在直角坐标系中描点,并画出函数的图象;
x1234
y
(3)根据图象回答:当函数值y<0时,x的取值范围是什么?
查看答案
某市今年中考理、化实验操作考试,采用学生抽签方式决定自己的考试内容.规定:每位考生必须在三个物理实验(用纸签A、B、C表示)和三个化学实验(用纸签D、E、F表示)中各抽取一个进行考试,小刚在看不到纸签的情况下,分别从中各随机抽取一个.
(1)用“列表法”或“树状图法”表示所有可能出现的结果;
(2)小刚抽到物理实验B和化学实验F(记作事件M)的概率是多少?
查看答案
如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.
(1)求证:四边形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.