期末补充习题:二次函数y=ax
2+bx+c(a≠0)的图象如图所示,根据图象可知:当k______时,方程ax
2+bx+c=k有两个不相等的实数根.
考点分析:
相关试题推荐
如图,正方形ABCD的边长为5cm,动点P从点C出发,沿折线C-B-A-D向终点D运动,速度为acm/s;动点Q从点B出发,沿对角线BD向终点D运动,速度为
cm/s.当其中一点到达自己的终点时,另一点也停止运动.当点P、点Q同时从各自的起点运动时,以PQ为直径的⊙O与直线BD的位置关系也随之变化,设运动时间为t(s).
(1)写出在运动过程中,⊙O与直线BD所有可能的位置关系______;
(2)在运动过程中,若a=3,求⊙O与直线BD相切时t的值;
(3)探究:在整个运动过程中,是否存在正整数a,使得⊙O与直线BD相切两次?若存在,请直接写出符合条件的两个正整数a及相应的t的值;若不存在,请说明理由.
查看答案
阅读材料:
我们学过二次函数的图象的平移,如:将二次函数y=2x
2的图象沿x轴向左平移3个单位长度得到函数y=2(x+3)
2的图象,再沿y轴向下平移1个单位长度,得到函数y=2(x+3)
2-1的图象.
类似的,将一次函数y=2x的图象沿x轴向右平移1个单位长度可得到函数y=2(x-1)的图象,再沿y轴向上平移1个单位长度,得到函数y=2(x-1)+1的图象.
解决问题:
(1)将一次函数y=-x的图象沿x轴向右平移2个单位长度,再沿y轴向上平移3个单位长度,得到函数 ______的图象;
(2)将
的图象沿y轴向上平移3个单位长度,得到函数 ______的图象,再沿x轴向右平移1个单位长度,得到函数 ______的图象;
(3)函数
的图象可由哪个反比例函数的图象经过怎样的变换得到?
查看答案
如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.
(1)请完成如下操作:①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;
②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD.
(2)请在(1)的基础上,完成下列填空:
①写出点的坐标:C______;D(______);
②⊙D的半径=______
查看答案
如图①的矩形包书纸示意图中,虚线是折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长为折叠进去的宽度.
(1)如图②,数学课本长为26cm,宽为18.5cm,厚为1cm.小明用一张面积为1260cm
2的矩形纸包好了这本书,展开后如图①所示,求折叠进去的宽度;
(2)现有一本长为19cm,宽为16cm,厚为6cm的字典.你能用一张41cm×26cm的矩形纸,按图①所示的方法包好这本字典,并使折叠进去的宽度不小于3cm吗?请说明理由.
查看答案
如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l与AB边相交于点D.过点C作CE∥AB交直线l于点E,设∠AOD=α.
(1)当α等于多少度时,四边形EDBC是等腰梯形?并求此时AD的长;
(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.
查看答案