满分5 > 初中数学试题 >

如图1,抛物线y=x2-2x+k与x轴交于A、B两点,与y轴交于点C(0,-3)...

如图1,抛物线y=x2-2x+k与x轴交于A、B两点,与y轴交于点C(0,-3).[图2、图3为解答备用图]
manfen5.com 满分网
(1)k=______,点A的坐标为______,点B的坐标为______
(2)设抛物线y=x2-2x+k的顶点为M,求四边形ABMC的面积;
(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由;
(4)在抛物线y=x2-2x+k上求点Q,使△BCQ是以BC为直角边的直角三角形.
(1)把C(0,-3)代入抛物线解析式可得k值,令y=0,可得A,B两点的横坐标; (2)过M点作x轴的垂线,把四边形ABMC分割成两个直角三角形和一个直角梯形,求它们的面积和; (3)设D(m,m2-2m-3),连接OD,把四边形ABDC的面积分成△AOC,△DOC,△DOB的面积和,求表达式的最大值;(4)有两种可能:B为直角顶点、C为直角顶点,要充分认识△OBC的特殊性,是等腰直角三角形,可以通过解直角三角形求出相关线段的长度. 【解析】 (1)把C(0,-3)代入抛物线解析式y=x2-2x+k中得k=-3 ∴y=x2-2x-3, 令y=0, 即x2-2x-3=0, 解得x1=-1,x2=3. ∴A(-1,0),B(3,0). (2)∵y=x2-2x-3=(x-1)2-4, ∴抛物线的顶点为M(1,-4),连接OM. 则△AOC的面积=,△MOC的面积=, △MOB的面积=6, ∴四边形ABMC的面积=△AOC的面积+△MOC的面积+△MOB的面积=9. 说明:也可过点M作抛物线的对称轴,将四边形ABMC的面 积转化为求1个梯形与2个直角三角形面积的和. (3)如图(2),设D(m,m2-2m-3),连接OD. 则0<m<3,m2-2m-3<0 且△AOC的面积=,△DOC的面积=m, △DOB的面积=-(m2-2m-3), ∴四边形ABDC的面积=△AOC的面积+△DOC的面积+△DOB的面积 =-m2+m+6 =-(m-)2+. ∴存在点D(,),使四边形ABDC的面积最大为. (4)有两种情况: 如图(3),过点B作BQ1⊥BC,交抛物线于点Q1、交y轴于点E,连接Q1C. ∵∠CBO=45°, ∴∠EBO=45°,BO=OE=3. ∴点E的坐标为(0,3). ∴直线BE的解析式为y=-x+3. 由 解得 ∴点Q1的坐标为(-2,5). 如图(4),过点C作CF⊥CB,交抛物线于点Q2、交x轴于点F,连接BQ2. ∵∠CBO=45°, ∴∠CFB=45°,OF=OC=3. ∴点F的坐标为(-3,0). ∴直线CF的解析式为y=-x-3. 由 解得 ∴点Q2的坐标为(1,-4). 综上,在抛物线上存在点Q1(-2,5)、Q2(1,-4),使△BCQ1、△BCQ2是以BC为直角边的直角三角形. 说明:如图(4),点Q2即抛物线顶点M,直接证明△BCM为直角三角形同样可以.
复制答案
考点分析:
相关试题推荐
图案设计:正方形绿化场地拟种植两种不同颜色的花卉,要求种植的花卉能组成轴对称或中心对称图案.下面是三种不同设计方案中的一部分,请把图①、图②补成既是轴对称图形,又是中心对称图形,并画出一条对称轴;把图③补成只是中心对称图形,并把中心标上字母P.(在你所设计的图案中用阴影部分和非阴影部分表示两种不同颜色的花卉.)
manfen5.com 满分网
查看答案
莆田新美蔬菜有限公司一年四季都有大量新鲜蔬菜销往全国各地,已成为我区经济发展的重要项目.近年来它的蔬菜产值不断增加,2007年蔬菜的产值是640万元,2009年产值达到1000万元.
(1)求2008年、2009年蔬菜产值的年平均增长率是多少?
(2)若2010年蔬菜产值继续稳步增长(即年增长率与前两年的年增长率相同),那么请你估计2010年该公司的蔬菜产值将达到多少万元?
查看答案
如图:AB是⊙O的直径,以OA为直径的⊙O1与⊙O的弦AC相交于D,DE⊥OC,垂足为E.
(1)求证:AD=DC;
(2)求证:DE是⊙O1的切线;
(3)如果OE=EC,请判断四边形O1OED是什么四边形,并证明你的结论.

manfen5.com 满分网 查看答案
在一个箱子中放有三张完全相同的卡片,卡片上分别标有数字1,2,3.从箱子中任意取出一张卡片,用卡片上的数字作为十位数字,然后放回,再取出一张卡片,用卡片上的数字作为个位数字,这样组成一个两位数,请用列表法或画树状图的方法完成下列问题.
(1)按这种方法能组成哪些两位数?
(2)组成的两位数是3的倍数的概率是多少?
查看答案
如图所示的网格图中,每小格都是边长为1的正方形,△ABC的三个顶点都在格点上,在建立直角坐标系后,点C的坐标(-1,2).
(1)画出△ABC绕点D(0,5)逆时针旋转90°后的△A1B1C1
(2)写出A1,C1的坐标.
(3)求点A旋转到A1所经过的路线长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.