满分5 > 初中数学试题 >

如图这是某次运动会开幕式上点燃火炬时在平面直角坐标系中的示意图,在地面有O、A两...

如图这是某次运动会开幕式上点燃火炬时在平面直角坐标系中的示意图,在地面有O、A两个观测点,分别测得目标点火炬C的仰视角为α、β,OA=2米,tanα=manfen5.com 满分网,tanβ=manfen5.com 满分网,位于点O正上方2米处的D点发射装置,可以向目标C发射一个火球点燃火炬,该火球运行的轨迹为一抛物线,当火球运行到距地面最大高度20米时,相应的水平距离为12米(图中E点).
(1)求火球运行轨迹的抛物线对应的函数解析式;
(2)说明按(1)中轨迹运行的火球能否点燃目标C.

manfen5.com 满分网
(1)本题是抛物线的问题,要充分运用抛物线在直角坐标系中的解析式解题,由已知得抛物线的顶点及经过一点,可设抛物线解析式的顶点式. (2)确定C点坐标,根据已知条件,需要解直角三角形;作CF⊥x轴,垂足为F,把问题转化到直角三角形中解决. 【解析】 (1)已知顶点E(12,20)可设火球运行抛物线解析式为 y=a(x-12)2+20, 把点D(0,2)代入解析式, 得a=-, ∴火球运行轨迹的抛物线对应的函数解析式为: y=-(x-12)2+20=-x2+3x+2; (2)设C(x1,y1),作CF⊥x轴,垂足为F, 则tanα==, 在Rt△AFC中,tanβ==, 解以上两个分式方程得x1=20,y1=12,即C(20,12), 代入y=-x2+3x+2适合, 所以点C在抛物线上,故能点燃目标.
复制答案
考点分析:
相关试题推荐
已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E,F,得四边形DECF,设DE=x,DF=y.
(1)用含y的代数式表示AE,得AE=______
(2)求y与x之间的函数关系式,并求出x的取值范围;
(3)设四边形DECF的面积为S,求出S的最大值.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,四边形ABCO是正方形,C点的坐标是(4,0).
(1)写出A,B两点的坐标;
(2)若E是线段BC上一点,且∠AEB=60°,沿AE折叠正方形ABCO,折叠后B点落在平面内F点处.请画出F点并求出它的坐标.

manfen5.com 满分网 查看答案
如图,二次函数y=x2+bx+c的图象经过点M(1,-2)、N(-1,6).
(1)求二次函数y=x2+bx+c的关系式;
(2)把Rt△ABC放在坐标系内,其中∠CAB=90°,点A、B的坐标分别为(1,0),(4,0),BC=5.将△ABC沿x轴向右平移,当点C落在抛物线上时,求△ABC平移的距离.

manfen5.com 满分网 查看答案
如图,有两个可以自由转动的均匀转盘A、B,转盘A、B被均匀地分成几等份,每份分别标上数字.有人为甲、乙两人设计了一个游戏,其规则如下:(1)同时自由转动转盘A与B;(2)转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次),指针同时指向的两个数都是偶数,那么甲胜;否则乙胜.你认为这样的规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明理由.

manfen5.com 满分网 查看答案
如图已知抛物线y=mx2+nx+p与y=x2+6x+5关于y轴对称,并与y轴交于点M,与x轴交于点A和B.求出y=mx2+nx+p的解析式,试猜想出一般形式y=ax2+bx+c关于y轴对称的二次函数解析式(不要求证明).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.