满分5 > 初中数学试题 >

如图,AB是半圆的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD. ...

如图,AB是半圆的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.
(1)判断直线PD是否为⊙O的切线,并说明理由;
(2)如果∠BDE=60°,PD=manfen5.com 满分网,求PA的长.

manfen5.com 满分网
(1)要证是直线PD是为⊙O的切线,需证∠PDO=90°.因为AB为直径,所以∠ADO+∠ODB=90°,由∠PDA=∠PBD=∠ODB可得∠ODA+∠PDA=90°,即∠PDO=90°. (2)根据已知可证△AOD为等边三角形,∠P=30°.在Rt△POD中运用三角函数可求解. 【解析】 (1)PD是⊙O的切线.理由如下: ∵AB为直径, ∴∠ADO+∠ODB=90°. ∵∠PDA=∠PBD=∠ODB, ∴∠ODA+∠PDA=90°.即∠PDO=90°. ∴PD是⊙O的切线. (2)∵∠BDE=60°,∠ADB=90°, ∴∠PDA=180°-90°-60°=30°, 又PD为半圆的切线,所以∠PDO=90°, ∴∠ADO=60°,又OA=OD, ∴△ADO为等边三角形,∠AOD=60°. 在Rt△POD中,PD=, ∴OD=1,OP=2, PA=PO-OA=2-1=1.
复制答案
考点分析:
相关试题推荐
如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC,△A1B1C1
manfen5.com 满分网
﹙1﹚将△ABC,△A1B1C1如图②摆放,使点A1与B重合,点B1在AC边的延长线上,连接CC1交BB1于点E.求证:∠B1C1C=∠B1BC.
﹙2﹚若将△ABC,△A1B1C1如图③摆放,使点B1与B重合,点A1在AC边的延长线上,连接CC1交A1B于点F,试判断∠A1C1C与∠A1BC是否相等,并说明理由.
﹙3﹚写出问题﹙2﹚中与△A1FC相似的三角形.
manfen5.com 满分网
查看答案
已知:m、n是方程x2-6x+5=0的两个实数根,且m<n,抛物线y=-x2+bx+c的图象经过点manfen5.com 满分网A(m,0)、B(0,n).
(1)求这个抛物线的解析式;
(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD的面积;
(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.
查看答案
四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.
(1)求随机抽取一张卡片,恰好得到数字2的概率;
(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树状图法说明理由,若认为不公平,请你修改规则,使游戏变得公平.

manfen5.com 满分网 查看答案
已知一元二次方程x2-2x+m=0.
(1)若方程有两个实数根,求m的范围;
(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.
查看答案
先化简,再求值:2(a+manfen5.com 满分网)(a-manfen5.com 满分网)-a(a-6)+6,其中a=manfen5.com 满分网-1.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.