满分5 > 初中数学试题 >

某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹...

某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22 400万元,但不超过22 500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:
型号AB
成本(万元/台)200240
售价(万元/台)250300
(1)该厂对这两型挖掘机有哪几种生产方案?
(2)该厂如何生产能获得最大利润?
(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂应该如何生产获得最大利润?(注:利润=售价-成本)
(1)在题目中,每种型号的成本及总成本的上限和下限都已知,所以设生产A型挖掘机x台,则B型挖掘机(100-x)台的情况下,可列不等式22400≤200x+240(100-x)≤22500,解不等式,取其整数值即可求解; (2)在知道生产方案以及每种利润情况下可列函数解析式W=50x+60(100-x)=6000-10x,利用函数的自变量取值范围和其单调性即可求得函数的最值; (3)结合(2)得W=(50+m)x+60(100-x)=6000+(m-10)x,在此,必须把(m-10)正负性考虑清楚,即m>10,m=10,m<10三种情况,最终才能得出结论.即怎样安排,完全取决于m的大小. 【解析】 (1)设生产A型挖掘机x台,则B型挖掘机(100-x)台, 由题意得22400≤200x+240(100-x)≤22500, 解得37.5≤x≤40. ∵x取非负整数, ∴x为38,39,40. ∴有三种生产方案 ①A型38台,B型62台; ②A型39台,B型61台; ③A型40台,B型60台. (2)设获得利润W(万元),由题意得W=50x+60(100-x)=6000-10x ∴当x=38时,W最大=5620(万元), 即生产A型38台,B型62台时,获得最大利润. (3)由题意得W=(50+m)x+60(100-x)=6000+(m-10)x 总之,当0<m<10,则x=38时,W最大,即生产A型38台,B型62台; 当m=10时,m-10=0则三种生产方案获得利润相等; 当m>10,则x=40时,W最大,即生产A型40台,B型60台.
复制答案
考点分析:
相关试题推荐
如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm/s的速度移动,同时点Q从点B出发沿BC边向点C以2cm/s的速度移动,如果P,Q两点同时出发,分别到达B,C两点后就停止移动.
(1)设运动开始后第t秒钟后,五边形APQCD的面积为Scm2,写出S与t的函数关系式,并指出自变量t的取值范围.
(2)t为何值时,S最小?最小值是多少?
manfen5.com 满分网
查看答案
如图,已知BC为⊙O的直径,AD⊥BC,垂足为D,BF交AD于E,且AE=BE.
(1)求证:manfen5.com 满分网=manfen5.com 满分网
(2)如果sin∠FBC=manfen5.com 满分网,AB=4manfen5.com 满分网,求AD的长.

manfen5.com 满分网 查看答案
有四张背面相同的纸牌A,B,C,D,其正面分别划有四个不同的稽核图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.
(1)用树状图(或列表法)表示两次模牌所有可能出现的结果(纸牌可用A、B、C、D表示);
(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.
manfen5.com 满分网
查看答案
如图,AB是⊙O的直径,BC是⊙O的切线,切点为点B,点D是⊙O上的一点,且AD∥OC.求证:AD•BC=OB•BD.

manfen5.com 满分网 查看答案
已知:如图,⊙O是△ABC的外接圆,manfen5.com 满分网,求tanA的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.