(1)连OD,先证明OD∥AC,再证明OD⊥DE.
(2)由∠C的余弦值得到∠C的度数,接着可得到三角形BOD是等边三角形,由此得三角形ABC也是等边三角形.求出DC就可得到AB.
(1)证明:如图,连接OD;(1分)
∵DE⊥AC,
∴∠DEC=90°.
∵O为AB中点,D为BC中点,
∴OD为△ABC的中位线.
∴OD∥AC.
∴∠ODE=∠DEC=90°.
即OD⊥DE.
∵点D在⊙O上,
∴DE是⊙O的切线.(2分)
(2)【解析】
∵,
∴∠C=60°.(3分)
∵OD∥AC,
∴∠BDO=∠C=60°.
∵OD=OB,
∴∠B=∠ODB=60°.
∴△ABC为等边三角形.
∵在△EDC中,∠DEC=90°,DE=6,
∴.(4分)
∵D为BC中点,
∴.
∴AB=.
∴⊙O的直径为.(5分)