如图1,在正方形ABCD中,对角线AC与BD相交于点O,AF平分∠BAC,交BD于点F.
(1)求证:DF=AD;
(2)过点F作FH⊥AB,垂足为点H,求证:FH+
AC=AD;
(3)如图2,将∠ADC绕顶点D旋转一定的角度后,DC边所在的直线与BC边交于点C
1(不与点B重合),DA边所在的直线与BA边的延长线交于点A
1. A
1F
1平分∠BA
1C
1,交BD于点F
1,过点F
1作F
1H
1⊥AB,垂足为H
1,试猜想F
1H
1、
A
1C
1与AD三者之间的数量关系,并证明你的猜想.
考点分析:
相关试题推荐
在△ABC中,AB、BC、AC三边的长分别为
、
、
,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.
(1)△ABC的面积为:______;
(2)若△DEF三边的长分别为
、
、
,请在图1的正方形网格中画出相应的△DEF,并利用构图法求出它的面积;
(3)如图2,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13,10,17,且△PQR、△BCR、△DEQ、△AFP的面积相等,求六边形花坛ABCDEF的面积.
查看答案
某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.
(1)求日均销售量p(桶)与销售单价x(元)的函数关系;
(2)若该经营部希望日均获利1350元,请你根据以上信息,就该桶装水的销售单价或销售数量,提出一个用一元二次方程解决的问题,并写出解答过程.
查看答案
如图,平行四边形ABCD中,点E是AD的中点,连接BE并延长交CD的延长线于点F.
(1)求证:△ABE≌△DFE;
(2)连接CE,当CE平分∠BCD时,求证:CE⊥BF.
查看答案
小冬与小夏是某中学篮球队的队员,在最近五场球赛中的得分如下表所示:
| 第一场 | 第二场 | 第三场 | 第四场 | 第五场 |
小冬 | 10 | 13 | 9 | 8 | 10 |
小夏 | 12 | 2 | 13 | 21 | 2 |
(1)根据上表所给的数据,填写下表:
| 平均数 | 中位数 | 众数 | 方差 |
小冬 | 10 | | 10 | 2.8 |
小夏 | 10 | 12 | | 32.4 |
(2)根据以上信息,若教练选择小冬参加下一场比赛,教练的理由是什么?
(3)若小冬的下一场球赛得分是11分,则在小冬得分的四个统计量中(平均数、中位数、众数与方差)哪些发生了改变,改变后是变大还是变小?(只要回答是“变大”或“变小”)
(
)
查看答案
如图,矩形ABCD中,点E、F分别在AB、BC上,△DEF为等腰直角三角形,∠DEF=90°,AD+CD=10,AE=2,求AD的长.
查看答案