满分5 > 初中数学试题 >

如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20米,如果水位上升3米,则...

如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20米,如果水位上升3米,则水面CD的宽是10米.
(1)建立如图所示的直角坐标系,求此抛物线的解析式;
(2)当水位在正常水位时,有一艘宽为6米的货船经过这里,船舱上有高出水面3.6米的长方体货物(货物与货船同宽).问:此船能否顺利通过这座拱桥?

manfen5.com 满分网
(1)以拱桥最顶端为原点,建立直角坐标系,根据题目中所给的数据写出函数解析式. (2)计算出本问可用两种方法求得,求x=3米时求出水面求出此时y的值,A、B点的横坐标减去y此时的值到正常水面AB的距离与3.6相比较即可得出答案. 【解析】 (1)设抛物线解析式为y=ax2, 因为抛物线关于y轴对称,AB=20,所以点B的横坐标为10, 设点B(10,n),点D(5,n+3), n=102•a=100a,n+3=52a=25a, 即, 解得, ∴; (2)∵抛物线y=-x2的顶点横坐标为x=3, ∴当x=3时, ∵-(-4)>3.6 ∴在正常水位时,此船能顺利通过这座拱桥. 答:在正常水位时,此船能顺利通过这座拱桥.
复制答案
考点分析:
相关试题推荐
如图,已知:△ABC内接于⊙O,AD是⊙O的切线,CO的延长线交AD于点D.
(1)若∠B=2∠D,求∠D的度数;
(2)在(1)的条件下,若manfen5.com 满分网,求⊙O的半径.

manfen5.com 满分网 查看答案
如图,在某建筑物AC上,挂着宣传条幅BC,小明站在点F处,看条幅顶端B,测得的仰角为30°,再往条幅方向前行20米到达点E处,看条幅顶端B,测得的仰角为60°,若小明的身高约1.7米,求宣传条幅BC的长(结果精确到1米).

manfen5.com 满分网 查看答案
在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0).
(1)求该二次函数的解析式;
(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.

manfen5.com 满分网 查看答案
如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.已知,△ABC的顶点都在格点上,∠C=90°,AC=8,BC=4,若在边AC上以某个格点E为端点画出长是manfen5.com 满分网的线段EF,使线段另一端点F恰好落在边BC上,且线段EF与点C构成的三角形与△ABC相似,请你在图中画出线段EF(不必说明理由).

manfen5.com 满分网 查看答案
正四面体各面分别标有数字1、2、3、4,正六面体各面分别标有数字1、2、3、4、5、6,同时掷这两个正多面体,并将它们朝下面上的数字相加.
(1)请用树状图或列表的方法表示可能出现的所有结果;
(2)求两个正多面体朝下面上的数字之和是3的倍数的概率.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.