满分5 > 初中数学试题 >

已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x...

已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).
(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据抛物线过C(0,4)点,可确定c=4,然后可将A的坐标代入抛物线的解析式中,即可得出二次函数的解析式. (2)可先设Q的坐标为(m,0);通过求△CEQ的面积与m之间的函数关系式,来得出△CQE的面积最大时点Q的坐标. △CEQ的面积=△CBQ的面积-△BQE的面积. 可用m表示出BQ的长,然后通过相似△BEQ和△BCA得出△BEQ中BQ边上的高,进而可根据△CEQ的面积计算方法得出△CEQ的面积与m的函数关系式,可根据函数的性质求出△CEQ的面积最大时,m的取值,也就求出了Q的坐标. (3)本题要分三种情况进行求【解析】 ①当OD=OF时,OD=DF=AD=2,又有∠OAF=45°,那么△OFA是个等腰直角三角形,于是可得出F的坐标应该是(2,2).由于P,F两点的纵坐标相同,因此可将F的纵坐标代入抛物线的解析式中即可求出P的坐标. ②当OF=DF时,如果过F作FM⊥OD于M,那么FM垂直平分OD,因此OM=1,在直角三角形FMA中,由于∠OAF=45°,因此FM=AM=3,也就得出了F的纵坐标,然后根据①的方法求出P的坐标. ③当OD=OF时,OF=2,由于O到AC的最短距离为2,因此此种情况是不成立的. 综合上面的情况即可得出符合条件的P的坐标. 【解析】 (1)由题意,得 解得(2分) ∴所求抛物线的解析式为:y=-x2+x+4. (2)设点Q的坐标为(m,0),过点E作EG⊥x轴于点G. 由-x2+x+4=0, 得x1=-2,x2=4 ∴点B的坐标为(-2,0) ∴AB=6,BQ=m+2 ∵QE∥AC ∴△BQE∽△BAC ∴ 即 ∴ ∴S△CQE=S△CBQ-S△EBQ =BQ•CO-BQ•EG =(m+2)(4-) = =-(m-1)2+3 又∵-2≤m≤4 ∴当m=1时,S△CQE有最大值3,此时Q(1,0). (3)存在.在△ODF中. (ⅰ)若DO=DF ∵A(4,0),D(2,0) ∴AD=OD=DF=2 又在Rt△AOC中,OA=OC=4 ∴∠OAC=45度 ∴∠DFA=∠OAC=45度 ∴∠ADF=90度.此时,点F的坐标为(2,2) 由-x2+x+4=2, 得x1=1+,x2=1- 此时,点P的坐标为:P(1+,2)或P(1-,2). (ⅱ)若FO=FD,过点F作FM⊥x轴于点M 由等腰三角形的性质得:OM=OD=1 ∴AM=3 ∴在等腰直角△AMF中,MF=AM=3 ∴F(1,3) 由-x2+x+4=3, 得x1=1+,x2=1- 此时,点P的坐标为:P(1+,3)或P(1-,3). (ⅲ)若OD=OF ∵OA=OC=4,且∠AOC=90° ∴AC= ∴点O到AC的距离为,而OF=OD=2,与OF≥2矛盾,所以AC上不存在点使得OF=OD=2, 此时,不存在这样的直线l,使得△ODF是等腰三角形 综上所述,存在这样的直线l,使得△ODF是等腰三角形 所求点P的坐标为:P(1+,2)或P(1-,2)或P(1+,3)或P(1-,3).
复制答案
考点分析:
相关试题推荐
某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?
(成本=进价×销售量)
查看答案
如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF.
(1)证明:AF平分∠BAC;
(2)证明:BF=FD;
(3)若EF=4,DE=3,求AD的长.

manfen5.com 满分网 查看答案
“端午”节前,第一次爸爸去超市购买了大小、质量都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时随机取出火腿粽子的概率为manfen5.com 满分网;妈妈发现小亮喜欢吃的火腿粽子偏少,第二次妈妈又去买了同样的5只火腿粽子和1只豆沙粽子放入同一盒中,这时随机取出火腿粽子的概率为manfen5.com 满分网
(1)请计算出第一次爸爸买的火腿粽子和豆沙粽子各有多少只?
(2)若妈妈从盒中取出火腿粽子4只、豆沙粽子6只送爷爷和奶奶后,再让小亮从盒中不放回地任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用字母和数字表示豆沙粽子和火腿粽子,用列清法计算)
查看答案
如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连接EC、CD.
(1)求证:直线AB是⊙O的切线;
(2)试猜想BC,BD,BE三者之间的等量关系,并加以证明.

manfen5.com 满分网 查看答案
如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F.点E是AB的中manfen5.com 满分网点,连接EF.
(1)求证:EF∥BC;
(2)若△ABD的面积是6,求四边形BDFE的面积.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.