满分5 > 初中数学试题 >

含30°角的直角三角板ABC中,∠A=30°.将其绕直角顶点C顺时针旋转α角(0...

含30°角的直角三角板ABC中,∠A=30°.将其绕直角顶点C顺时针旋转α角(0°<α<120°且α≠90°),得到Rt△A'B'C,A'C边与AB所在直线交于点D,过点 D作DE∥A'B'交CB'边于点E,连接BE.
(1)如图1,当A'B'边经过点B时,α=______°;
(2)在三角板旋转的过程中,若∠CBD的度数是∠CBE度数的m倍,猜想m的值并证明你的结论;
(3)设BC=1,AD=x,△BDE的面积为S,以点E为圆心,EB为半径作⊙E,当S=manfen5.com 满分网时,求AD的长,并判断此时直线A'C与⊙E的位置关系.
manfen5.com 满分网
(1)有旋转可得出∠α; (2)①如图1,点D在AB边上时,m=2;②如图2,点D在AB的延长线上时,m=4.由相似和旋转的性质得出∠A=∠CBE=30°.从而得出m的值; (3)先求得△ABC的面积,再由△CAD∽△CBE,求得BE,分情况讨论:①当点D在AB边上时,AD=x,BD=AB-AD=2-x,得出直线A′C与⊙E相切.②当点D在AB的延长线上时,AD=x,BD=x-2,得出直线A′C与⊙E相交. 【解析】 (1)当A′B′过点B时,α=60°; (2)猜想:①如图1,点D在AB边上时,m=2; ②如图2,点D在AB的延长线上时,m=4. 证明:①当0°<α<90°时,点D在AB边上(如图1). ∵DE∥A′B′, ∴. 由旋转性质可知,CA=CA′,CB=CB′,∠ACD=∠BCE. ∴. ∴△CAD∽△CBE. ∴∠A=∠CBE=30°. ∵点D在AB边上,∠CBD=60°, ∴∠CBD=2∠CBE,即m=2. ②当90°<α<120°时,点D在AB的延长线上(如图2). 与①同理可得∠A=∠CBE=30°. ∵点D在AB的延长线上,∠CBD=180°-∠CBA=120°, ∴∠CBD=4∠CBE, 即m=4; (3)在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1, ∴AB=2,,. 由△CAD∽△CBE得. ∵AD=x, ∴,. ①当点D在AB边上时,AD=x,BD=AB-AD=2-x,∠DBE=90°. 此时,. 当S=时,. 整理,得x2-2x+1=0. 解得x1=x2=1,即AD=1. 此时D为AB中点,∠DCB=60°,∠BCE=30°=∠CBE.(如图3) ∴EC=EB. ∵∠A′CB′=90°,点E在CB′边上, ∴圆心E到A′C的距离EC等于⊙E的半径EB. ∴直线A′C与⊙E相切. ②当点D在AB的延长线上时,AD=x,BD=x-2,∠DBE=90°.(如图2).. 当S=时,. 整理,得x2-2x-1=0. 解得,(负值,舍去). 即. 此时∠BCE=α,而90°<α<120°,∠CBE=30°, ∴∠CBE<∠BCE. ∴EC<EB,即圆心E到A′C的距离EC小于⊙E的半径EB. ∴直线A′C与⊙E相交.
复制答案
考点分析:
相关试题推荐
已知抛物线y=ax2-(a+c)x+c(其中a≠c且a≠0).
(1)求此抛物线与x轴的交点坐标;(用a,c的代数式表示)
(2)若经过此抛物线顶点A的直线y=-x+k与此抛物线的另一个交点为B(manfen5.com 满分网,-c),求此抛物线的解析式;
(3)点P在(2)中x轴上方的抛物线上,直线y=-x+k与 y轴的交点为C,若tan∠POB=manfen5.com 满分网tan∠POC,求点P的坐标;
(4)若(2)中的二次函数的自变量x在n≤x<n+1(n为正整数)的范围内取值时,记它的整数函数值的个数为N,则N关于n的函数关系式为______
查看答案
已知关于x的一元二次方程 (m-2)x2-(m-1)x+m=0.(其中m为实数)
(1)若此方程的一个非零实数根为k,
①当k=m时,求m的值;
②若记manfen5.com 满分网为y,求y与m的关系式;
(2)当manfen5.com 满分网<m<2时,判断此方程的实数根的个数并说明理由.
查看答案
请阅读下面材料:
若A(x1,y),B(x2,y) 是抛物线y=ax2+bx+c(a≠0)上不同的两点,证明直线manfen5.com 满分网为此抛物线的对称轴.
有一种方法证明如下:
①②
证明:∵A(x1,y),B(x2,y) 是抛物线y=ax2+bx+c(a≠0)上不同的两点
manfen5.com 满分网且 x1≠x2
①-②得 a(x12-x22)+b(x1-x2)=0.
∴(x1-x2)[a(x1+x2)+b]=0.
manfen5.com 满分网
又∵抛物线y=ax2+bx+c(a≠0)的对称轴为manfen5.com 满分网
∴直线manfen5.com 满分网为此抛物线的对称轴.
(1)反之,如果M(x1,y1),N(x2,y2) 是抛物线y=ax2+bx+c(a≠0)上不同的两点,直线manfen5.com 满分网为该抛物线的对称轴,那么自变量取x1,x2时函数值相等吗?写出你的猜想,并参考上述方法写出证明过程;
(2)利用以上结论解答下面问题:
已知二次函数y=x2+bx-1当x=4时的函数值与x=2007时的函数值相等,求x=2012时的函数值.
查看答案
已知:如图,AB是⊙O的直径,AC是弦,OD⊥AC于点E,交⊙O于点F,连接BF,CF,∠D=∠BFC.
(1)求证:AD是⊙O的切线;(2)若AC=8,tanB=manfen5.com 满分网,求AD的长.

manfen5.com 满分网 查看答案
两个长为2,宽为1的矩形ABCD和矩形EFGH如图1所示摆放在直线l上,DE=2,将矩形ABCD绕点D顺时针旋转α角(0°<α<90°),将矩形EFGH绕点E逆时针旋转相同的角度.
(1)当两个矩形旋转到顶点C,F重合时(如图2),∠DCE=______°,点C到直线l的距离等于______
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.