满分5 > 初中数学试题 >

如图,l1,l2,l3,l4是同一平面内的四条平行直线,且每相邻的两条平行直线间...

如图,l1,l2,l3,l4是同一平面内的四条平行直线,且每相邻的两条平行直线间的距离为h,正方形ABCD的四个顶点分别在这四条直线上,且正方形ABCD的面积是25.
(1)连接EF,证明△ABE、△FBE、△EDF、△CDF的面积相等.
(2)求h的值.

manfen5.com 满分网
(1)△ABE和△FBE同底同高,因而面积相等,同理△FBE和△EDF的面积相等,△EDF和△CDF的面积相等,因而△ABE、△FBE、△EDF、△CDF的面积相等. (2)根据正方形的面积就可以求出边长,得到AE,AB的长,根据勾股定理得到BE的长,△ABE的面积是长方形的面积的,再根据三角形的面积等于BE•h就可以求出h的长. (1)证明:连接EF, ∵l1∥l2∥l3∥l4,且四边形ABCD是正方形, ∴BE∥FD,BF∥ED, ∴四边形EBFD为平行四边形, ∴BE=FD,(2分) 又∵l1、l2、l3和l4之间的距离为h, ∴S△ABE=BE•h,S△FBE=BE•h, S△EDF=FD•h,S△CDF=FD•h, ∴S△ABE=S△FBE=S△EDF=S△CDF.(4分) (2)【解析】 过A点作AH⊥BE于H点,过E点作EM⊥FD于M点, 方法一:∵S△ABE=S△FBE=S△EDF=S△CDF, 又∵正方形ABCD的面积是25, ∴S△ABE=,且AB=AD=5,(7分) 又∵l1∥l2∥l3∥l4,每相邻的两条平行直线间的距离为h, ∴AH=EM=h, ∵AH⊥l2,EM⊥l3,l2∥l3, ∴∠3=∠4=90°,AH∥EM, ∴∠1=∠2, ∴△AHE≌△EMD, ∴AE=DE, 同理:BF=FC, ∴E、F分别是AD与BC的中点, ∴AE=AD=, ∴在Rt△ABE中, BE==,(10分) 又∵AB•AE=BE•AH, ∴.(12分) 方法二:不妨设BE=FD=x(x>0), 则S△ABE=S△FBE=S△EDF=S△CDF=,(6分) 又∵正方形ABCD的面积是25, ∴S△ABE=xh=,且AB=5, 则xh=①,(8分) 又∵在Rt△ABE中:AE=, 又∵∠BAE=90°,AH⊥BE, ∴Rt△ABE∽Rt△HAE, ∴,即, 变形得:(hx)2=25(x2-52)②(10分), 把①两边平方后代入②得:=25(x2-52)③, 解方程③得x=(x=-舍去), 把x=代入①得:h=.(12分)
复制答案
考点分析:
相关试题推荐
在某旅游景区上山的一条小路上,有一些断断续续的台阶,如图是其中的甲、乙段台阶路的示意图.请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:
(1)两段台阶路有哪些相同点和不同点?
(2)哪段台阶路走起来更舒服,为什么?
(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.
manfen5.com 满分网
查看答案
计算:
manfen5.com 满分网
manfen5.com 满分网
③(3manfen5.com 满分网-2manfen5.com 满分网2-(3manfen5.com 满分网+2manfen5.com 满分网2
manfen5.com 满分网÷(manfen5.com 满分网
查看答案
矩形内有一点P到各边的距离分别为:1、3、5、7,则该矩形的最大面积为    平方单位. 查看答案
如果用4个相同的长为3宽为1的长方形,拼成一个大的长方形,那么这个大的长方形的周长可以是    查看答案
等腰梯形的周长是80cm,它的中位线和腰长相等,梯形的高是8cm,那么梯形的面积是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.