(1)根据,先求出AB的长,然后求得BD,从而得出线段DC的长;
(2)先判断∠EDC=∠ECD,在Rt△ACD中,再求tan∠ECD的值,即tan∠EDC的值;
(3)根据三角形的面积,求出AB边上的高,从而求得sin∠BAC.
【解析】
(1)∵,
∴=,
∵AD=12,
∴AB=15,
由勾股定理得,BD===9,
∵BC=14,
∴线段DC的长=14-9=5;
(2)∵E为边AC的中点,AD是边BC上的高,
∴AE=EC=DE,(直角三角形斜边上的中线等于斜边的一半)
∴DE=EC,
∴∠EDC=∠ECD,
∴tan∠EDC=tan∠ECD==;
(3)过点C作CF⊥AB,
∵S△ABC=BC•AD÷2=14×12÷2=84,
∴AB•CF÷2=84,
∴CF=,
∴sin∠BAC==×=.