已知:抛物线y=x
2+(1-2a)x+a
2( a≠0 )与x轴交于点A(x
1,0)、B(x
2,0),且x
1≠x
2.
(1)求a的取值范围,并证明A、B两点都在原点O的左侧;
(2)若抛物线与y轴交于点C,是否存在这样的a使得OA
2+OB
2=OA+OB+OC-1成立,若存在,求出a,若不存在,说明理由.
考点分析:
相关试题推荐
一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店日净收入.(日净收入=每天的销售额一套餐成本-每天固定支出)
(1)求y与x的函数关系式;
(2)若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元;
(3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?
查看答案
如图,一次函数y=x+k图象过点A(1,0),交y轴于点B,C为y轴负半轴上一点,且OB=
BC,过A,C两点的抛物线交直线AB于点D,且CD∥x轴.
(1)求这条抛物线的解析式;
(2)直接写出使一次函数值小于二次函数值时x的取值范围.
查看答案
春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如下收费标准:
某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27 000元.请问该单位这次共有多少员工去天水湾风景区旅游?
查看答案
设x
1,x
2是关于x的一元二次方程x
2+2ax+a
2+4a-2=0的两实根,当a为何值时,x
12+x
22有最小值?最小值是多少?
查看答案
在一次课题学习课上,同学们为教室窗户设计一个遮阳蓬,小明同学绘制的设计图如图所示,其中,AB表示窗户,且AB=2米,BCD表示直角遮阳蓬,已知当地一年中在午时的太阳光与水平线CD的最小夹角α为18.6°,最大夹角β为64.5度.请你根据以上数据,帮助小明同学计算出遮阳蓬中CD的长是多少米?(结果保留两个有效数字)
(参考数据:sin18.6°=0.32,tan18.6°=0.34,sin64.5°=0.90,tan64.5°=2.1)
查看答案