满分5 > 初中数学试题 >

如果函数y=kx-2(k≠0)的图象不经过第一象限,那么函数y=的图象一定在( ...

如果函数y=kx-2(k≠0)的图象不经过第一象限,那么函数y=manfen5.com 满分网的图象一定在( )
A.第一,二象限
B.第三,四象限
C.第一,三象限
D.第二,四象限
根据一次函数和反比例函数的性质,由一次函数不经第一象限,则k<0,由此反比例函数位于二、四象限. 【解析】 ∵函数y=kx-2(k≠0)的图象不经过第一象限, ∴k<0, 根据反比例函数的性质,函数y=的图象一定在第二、四象限. 故选D.
复制答案
考点分析:
相关试题推荐
反比例函数y=-manfen5.com 满分网的图象大致是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
如图,平面直角坐标系中有一矩形纸片OABC,O为原点,点A,C分别在x轴,y轴上,点B坐标为(m,manfen5.com 满分网)(其中m>0),在BC边上选取适当的点E和点F,将△OCE沿OE翻折,得到△OGE;再将△ABF沿AF翻折,恰好使点B与点G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求过点O,G,A的抛物线的解析式和对称轴;
(3)在抛物线的对称轴上是否存在点P,使得△OPG是等腰三角形?若不存在,请说明理由;若存在,直接答出所有满足条件的点P的坐标(不要求写出求解过程).

manfen5.com 满分网 查看答案
已知:抛物线y=x2+(1-2a)x+a2( a≠0 )与x轴交于点A(x1,0)、B(x2,0),且x1≠x2
(1)求a的取值范围,并证明A、B两点都在原点O的左侧;
(2)若抛物线与y轴交于点C,是否存在这样的a使得OA2+OB2=OA+OB+OC-1成立,若存在,求出a,若不存在,说明理由.
查看答案
一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店日净收入.(日净收入=每天的销售额一套餐成本-每天固定支出)
(1)求y与x的函数关系式;
(2)若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元;
(3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?
查看答案
如图,一次函数y=x+k图象过点A(1,0),交y轴于点B,C为y轴负半轴上一点,且OB=manfen5.com 满分网BC,过A,C两点的抛物线交直线AB于点D,且CD∥x轴.
(1)求这条抛物线的解析式;
(2)直接写出使一次函数值小于二次函数值时x的取值范围.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.